About this Journal Submit a Manuscript Table of Contents
Discrete Dynamics in Nature and Society
Volume 2013 (2013), Article ID 264025, 9 pages
http://dx.doi.org/10.1155/2013/264025
Research Article

Quasi-Linear Convection-Dominated Transport Problem Based on Characteristics-Mixed Finite Element Method

1School of Management, Shandong University, Jinan, Shandong 250100, China
2Department of Mathematics, Beijing Institute of Technology, Beijing 100081, China

Received 3 July 2013; Accepted 4 August 2013

Academic Editor: Shurong Sun

Copyright © 2013 Peixin Zhao and Hongying Man. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. R. Todd, P. M. O'Dell, and G. J. Hirasaki, “Methods for increased accuracy in numerical reservoir simulators,” Society of Petroleum Engineers Journal, vol. 12, no. 6, pp. 515–530, 1972. View at Scopus
  2. G. Chavent and J. Jaffre, Mathematical Models and Finite Elements For Reservoir Simulation, Elsevier, New York, NY, USA, 1986.
  3. F. Miniati and P. Colella, “A modified higher order Godunov's scheme for stiff source conservative hydrodynamics,” Journal of Computational Physics, vol. 224, no. 2, pp. 519–538, 2007. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  4. Z. Si, X. Feng, and A. Abduwali, “The semi-discrete streamline diffusion finite element method for time-dependented convection-diffusion problems,” Applied Mathematics and Computation, vol. 202, no. 2, pp. 771–779, 2008. View at Publisher · View at Google Scholar · View at MathSciNet
  5. D. Yang, “Some least-squares Galerkin procedures for first-order time-dependent convection-diffusion system,” Computer Methods in Applied Mechanics and Engineering, vol. 180, no. 1-2, pp. 81–95, 1999. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  6. D.-P. Yang, “Analysis of least-squares mixed finite element methods for nonlinear nonstationary convection-diffusion problems,” Mathematics of Computation, vol. 69, no. 231, pp. 929–963, 2000. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  7. J. Douglas, Jr. and T. F. Russell, “Numerical methods for convection-dominated diffusion problems based on combining the method of characteristics with finite element or finite difference procedures,” SIAM Journal on Numerical Analysis, vol. 19, no. 5, pp. 871–885, 1982. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  8. R. E. Ewing, T. F. Russell, and M. F. Wheeler, “Convergence analysis of an approximation of miscible displacement in porous media by mixed finite elements and a modified method of characteristics,” Computer Methods in Applied Mechanics and Engineering, vol. 47, no. 1-2, pp. 73–92, 1984. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  9. C. N. Dawson, T. F. Russell, and M. F. Wheeler, “Some improved error estimates for the modified method of characteristics,” SIAM Journal on Numerical Analysis, vol. 26, no. 6, pp. 1487–1512, 1989. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  10. M. A. Celia, T. F. Russell, I. Herrera, and R. E. Ewing, “An Eulerian-Lagrangian localized adjoint method for the advection-diffusion equation,” Advances in Water Resources, vol. 13, no. 4, pp. 187–206, 1990. View at Scopus
  11. J. Douglas, Jr. and J. E. Roberts, “Global estimates for mixed methods for second order elliptic equations,” Mathematics of Computation, vol. 44, no. 169, pp. 39–52, 1985. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  12. Y. Chen and Z. Lu, “Error estimates for parabolic optimal control problem by fully discrete mixed finite element methods,” Finite Elements in Analysis and Design, vol. 46, no. 11, pp. 957–965, 2010. View at Publisher · View at Google Scholar · View at MathSciNet
  13. F. A. Milner and E.-J. Park, “A mixed finite element method for a strongly nonlinear second-order elliptic problem,” Mathematics of Computation, vol. 64, no. 211, pp. 973–988, 1995. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  14. K.-Y. Kim, “Guaranteed a posteriori error estimator for mixed finite element methods of elliptic problems,” Applied Mathematics and Computation, vol. 218, no. 24, pp. 11820–11831, 2012. View at Publisher · View at Google Scholar · View at MathSciNet
  15. P.-A. Raviart and J. M. Thomas, “A mixed finite element method for 2nd order elliptic problems,” in Mathematical Aspects of Finite Element Methods, vol. 606 of Lecture Notes in Mathematics, pp. 292–315, Springer, Berlin, Germany, 1977. View at Zentralblatt MATH · View at MathSciNet