About this Journal Submit a Manuscript Table of Contents
Discrete Dynamics in Nature and Society
Volume 2013 (2013), Article ID 269235, 11 pages
http://dx.doi.org/10.1155/2013/269235
Research Article

Consensus Analysis for High-Order Multi-Agent Systems without or with Delays

1College of Science, Nanjing University of Posts and Telecommunications, Nanjing 210003, China
2College of Telecommunications and Information Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210003, China

Received 26 August 2013; Accepted 7 September 2013

Academic Editor: Guanghui Wen

Copyright © 2013 Zhengxin Wang and Yang Cao. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. T. Vicsek, A. Czirk, E. Ben-Jacob, I. Cohen, and O. Shochet, “Novel type of phase transition in a system of self-driven particles,” Physical Review Letters, vol. 75, no. 6, pp. 1226–1229, 1995. View at Publisher · View at Google Scholar · View at Scopus
  2. A. Jadbabaie, J. Lin, and A. S. Morse, “Coordination of groups of mobile autonomous agents using nearest neighbor rules,” IEEE Transactions on Automatic Control, vol. 48, no. 6, pp. 988–1001, 2003. View at Publisher · View at Google Scholar · View at MathSciNet
  3. R. Olfati-Saber and R. M. Murray, “Consensus problems in networks of agents with switching topology and time-delays,” IEEE Transactions on Automatic Control, vol. 49, no. 9, pp. 1520–1533, 2004. View at Publisher · View at Google Scholar · View at MathSciNet
  4. W. Ren and R. W. Beard, “Consensus seeking in multi-agent systems under dynamically changing interaction topologies,” IEEE Transactions on Automatic Control, vol. 50, no. 5, pp. 655–661, 2005. View at Publisher · View at Google Scholar · View at MathSciNet
  5. Z. Meng, W. Ren, Y. Cao, and Z. You, “Leaderless and leader-following consensus with communication and input delays under a directed network topology,” IEEE Transactions on Systems, Man, and Cybernetics B, vol. 41, no. 1, pp. 75–88, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. G. Xie and L. Wang, “Consensus control for a class of networks of dynamic agents,” International Journal of Robust and Nonlinear Control, vol. 17, no. 10-11, pp. 941–959, 2007. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  7. W. Ren, “On consensus algorithms for double-integrator dynamics,” IEEE Transactions on Automatic Control, vol. 58, no. 6, pp. 1503–1509, 2008. View at Publisher · View at Google Scholar · View at MathSciNet
  8. G. Wen, Z. Duan, W. Yu, and G. Chen, “Consensus of second-order multi-agent systems with delayed nonlinear dynamics and intermittent communications,” International Journal of Control, vol. 86, no. 2, pp. 322–331, 2013. View at Publisher · View at Google Scholar · View at MathSciNet
  9. W. Yu, G. Chen, M. Cao, and J. Kurths, “Second-order consensus for multi-agent systems with directed topologies and nonlinear dynamics,” IEEE Transactions on Systems, Man, and Cybernetics B, vol. 40, no. 3, pp. 881–891, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. W. Yu, G. Chen, and M. Cao, “Some necessary and sufficient conditions for second-order consensus in multi-agent dynamical systems,” Automatica, vol. 46, no. 6, pp. 1089–1095, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  11. Q. Song, J. Cao, and W. Yu, “Second-order leader-following consensus of nonlinear multi-agent systems via pinning control,” Systems & Control Letters, vol. 59, no. 9, pp. 553–562, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  12. W. Zhu and D. Cheng, “Leader-following consensus of second-order agents with multiple time-varying delays,” Automatica, vol. 46, no. 12, pp. 1994–1999, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  13. G. Wen, Z. Duan, W. Yu, and G. Chen, “Consensus in multi-agent systems with communication constraints,” International Journal of Robust and Nonlinear Control, vol. 22, no. 2, pp. 170–182, 2012. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  14. G. Wen, Z. Duan, W. Yu, and G. Chen, “Consensus of multi-agent systems with nonlinear dynamics and sampled-data information: a delayed-input approach,” International Journal of Robust and Nonlinear Control, vol. 23, no. 6, pp. 602–619, 2013. View at Publisher · View at Google Scholar · View at MathSciNet
  15. Z. Li, Z. Duan, G. Chen, and L. Huang, “Consensus of multiagent systems and synchronization of complex networks: a unified viewpoint,” IEEE Transactions on Circuits and Systems I, vol. 57, no. 1, pp. 213–224, 2010. View at Publisher · View at Google Scholar · View at MathSciNet
  16. W. Ren, K. L. Moore, and Y. Chen, “High-order and model reference consensus algorithms in cooperative control of multivehicle systems,” Journal of Dynamic Systems, Measurement and Control, vol. 129, no. 5, pp. 678–688, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. F. Jiang, L. Wang, and Y. Jia, “Consensus in leaderless networks of high-order-integrator agents,” in Proceedings of the American Control Conference (ACC '09), pp. 4458–4462, St. Louis, Mo, USA, June 2009. View at Scopus
  18. W. He and J. Cao, “Consensus control for high-order multi-agent systems,” IET Control Theory & Applications, vol. 5, no. 1, pp. 231–238, 2011. View at Publisher · View at Google Scholar · View at MathSciNet
  19. F. Xiao and L. Wang, “Consensus problems for high-dimensional multi-agent systems,” IET Control Theory & Applications, vol. 1, no. 3, pp. 830–837, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. N. Cai, J.-X. Xi, and Y.-S. Zhong, “Swarm stability of high-order linear time-invariant swarm systems,” IET Control Theory & Applications, vol. 5, no. 2, pp. 402–408, 2011. View at Publisher · View at Google Scholar · View at MathSciNet
  21. P. Lin and Y. Jia, “Consensus of a class of second-order multi-agent systems with time-delay and jointly-connected topologies,” IEEE Transactions on Automatic Control, vol. 55, no. 3, pp. 778–784, 2010. View at Publisher · View at Google Scholar · View at MathSciNet
  22. C. Liu and F. Liu, “Consensus problem of coupled dynamic agents with communication delay,” in Proceedings of the 29th Chinese Control Conference (CCC '10), pp. 4501–4505, Beijing, China, July 2010. View at Scopus
  23. X. Liu, W. Lu, and T. Chen, “Consensus of multi-agent systems with unbounded time-varying delays,” IEEE Transactions on Automatic Control, vol. 55, no. 10, pp. 2396–2401, 2010. View at Publisher · View at Google Scholar · View at MathSciNet
  24. Y. G. Sun, L. Wang, and G. Xie, “Average consensus in networks of dynamic agents with switching topologies and multiple time-varying delays,” Systems & Control Letters, vol. 57, no. 2, pp. 175–183, 2008. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  25. W. Yu, G. Chen, and W. Ren, “Delay-induced quasi-consensus in multi-agent dynamical systems,” in Proceedings of the 29th Chinese Control Conference (CCC '10), pp. 4566–4571, Beijing, China, July 2010. View at Scopus
  26. C. Godsil and G. Royle, Algebraic Graph Theory, Springer, New York, NY, USA, 2001. View at Publisher · View at Google Scholar · View at MathSciNet