About this Journal Submit a Manuscript Table of Contents
Discrete Dynamics in Nature and Society
Volume 2013 (2013), Article ID 316896, 8 pages
http://dx.doi.org/10.1155/2013/316896
Research Article

A Pilot Study Verifying How the Curve Information Impacts on the Driver Performance with Cognition Model

Key Laboratory of Traffic Engineering, Beijing University of Technology, Beijing 100124, China

Received 18 September 2012; Revised 27 December 2012; Accepted 28 December 2012

Academic Editor: Wuhong Wang

Copyright © 2013 Xiaohua Zhao et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. G. Charlton, “The role of attention in horizontal curves: a comparison of advance warning, delineation, and road marking treatments,” Accident Analysis & Prevention, vol. 39, no. 5, pp. 873–885, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. L. Herrstedt and P. Greibe, “Safer signing and marking of horizontal curves on rural roads,” Traffic Engineering and Control, vol. 42, no. 3, pp. 82–87, 2001. View at Scopus
  3. J. E. Hummer, W. Rasdorf, D. J. Findley, C. V. Zegeer, and C. A. Sundstrom, “Curve collisions: road and collision characteristics and countermeasures,” Journal of Transportation Safety and Security, vol. 2, no. 3, pp. 203–220, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. T. Ben-Bassat and D. Shinar, “Ergonomic guidelines for traffic sign design increase sign comprehension,” Human Factors, vol. 48, no. 1, pp. 182–195, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. W. Wang, Vehicle's Man-Machine Interaction Safety and Driver Assistance, China Communications Press, Beijing, China, 2012.
  6. D. D. Salvucci, “Modeling driver behavior in a cognitive architecture,” Human Factors, vol. 48, no. 2, pp. 362–380, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. D. J. Finch, P. Kompfner, C. R. Lockwood, and G. Maycock, “Speed, speed limits and accidents,” Project Report 58, Transport Research Laboratory, Crowthorne, UK, 1994.
  8. H. Guo, W. Wang, W. Guo, X. Jiang, and H. Bubb, “Reliability analysis of pedestrian safety crossing in urban traffic environment,” Safety Science, vol. 50, no. 4, pp. 968–973, 2012. View at Publisher · View at Google Scholar
  9. S. L. Comte and A. H. Jamson, “Traditional and innovative speed-reducing measures for curves: an investigation of driver behaviour using a driving simulator,” Safety Science, vol. 36, no. 3, pp. 137–150, 2000. View at Publisher · View at Google Scholar · View at Scopus
  10. I. R. Johnston, “Modifying driver behaviour on rural road curves: a review of recent research,” in Proceedings of the 11th Australian Road Research Board (ARRB) Conference, vol. 11, part 4, pp. 115–124, 1982.
  11. D. J. Findley, J. E. Hummer, W. Rasdorf, C. V. Zegeer, and T. J. Fowler, “Modeling the impact of spatial relationships on horizontal curve safety,” Accident Analysis & Prevention, vol. 45, pp. 296–304, 2012. View at Publisher · View at Google Scholar
  12. J. R. Anderson, M. Matessa, and C. Lebiere, “ACT-R: a theory of higher level cognition and its relation to visual attention,” Human-Computer Interaction, vol. 12, no. 4, pp. 439–462, 1997. View at Publisher · View at Google Scholar · View at Scopus
  13. Y. C. Liu, “A simulated study on the effects of information volume on traffic signs, viewing strategies and sign familiarity upon driver's visual search performance,” International Journal of Industrial Ergonomics, vol. 35, no. 12, pp. 1147–1158, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. S. H. Chang, C. Y. Lin, C. P. Fung, J. R. Hwang, and J. L. Doong, “Driving performance assessment: effects of traffic accident location and alarm content,” Accident Analysis and Prevention, vol. 40, no. 5, pp. 1637–1643, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. M. Maltz and D. Shinar, “Imperfect in-vehicle collision avoidance warning systems can aid distracted drivers,” Transportation Research Part F, vol. 10, no. 4, pp. 345–357, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. G. Abe and J. Richardson, “The influence of alarm timing on braking response and driver trust in low speed driving,” Safety Science, vol. 43, no. 9, pp. 639–654, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. J. Roca, C. Castro, M. Bueno, and S. Moreno-Ríos, “A driving-emulation task to study the integration of goals with obligatory and prohibitory traffic signs,” Applied Ergonomics, vol. 43, no. 1, pp. 81–88, 2012. View at Publisher · View at Google Scholar
  18. A. Newell, Unified Theories of Cognition, Harvard University Press, Cambridge, Mass, USA, 1990.
  19. W. D. Gray, R. M. Young, and S. S. Kirschenbaum, “Introduction to this special issue on cognitive architectures and human-computer interaction,” Human-Computer Interaction, vol. 12, no. 4, pp. 301–309, 1997. View at Publisher · View at Google Scholar
  20. J. R. Anderson and C. D. Schunn, “Implications of the ACT-R learning theory: no magic bullets,” in Advances in Instructional Psychology, R. Glaser, Ed., Erlbaum, Mahwah, NJ, USA, 2000.
  21. A. J. Hornof and D. E. Kieras, “Cognitive modeling demonstrates how people use anticipated location knowledge of menu items,” in Proceedings of the ACM Conference on Human Factors in Computing Systems (CHI '99), pp. 410–417, ACM, Pittsburgh, Pa, USA, May 1999. View at Scopus
  22. D. E. Kieras and D. E. Meyer, “The role of cognitive task analysis in the application of predictive models of human performance,” in Cognitive Task Analysis, J. M. Schraagen and S. F. Chipman, Eds., pp. 237–260, Erlbaum, Mahwah, NJ, USA, 2000.