About this Journal Submit a Manuscript Table of Contents
Discrete Dynamics in Nature and Society
Volume 2013 (2013), Article ID 320943, 7 pages
http://dx.doi.org/10.1155/2013/320943
Research Article

Individual Subjective Initiative Merge Model Based on Cellular Automaton

1Pohl Institute of Solid State Physics, Tongji University, Shanghai 200092, China
2Key Laboratory of Road and Traffic Engineering, Tongji University, Shanghai 201804, China

Received 2 August 2012; Revised 2 January 2013; Accepted 3 January 2013

Academic Editor: Wuhong Wang

Copyright © 2013 Yin-Jie Xu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Tarko, S. Kanipakapatman, and J. Wasson, “Modeling and optimization of the Indiana Lane merge control system on approaches to freeway work zones,” Final Report FHWA/IN/JTRP-97/12, Purdue University, West Lafayette, Ind, USA, 1998.
  2. P. T. McCoy, G. Pesti, and P. S. Byrd, “Alternative information to alleviate work zone related delays,” SPR-PL-1 SPR-PL-1(35) P513, University of Nebraska-Lincoln, 1999.
  3. G. Pesti, D. R. Jessen, P. S. Byrd, and P. T. McCoy, “Traffic flow characteristics of the late merge work zone control strategy,” Transportation Research Record, no. 1657, pp. 1–9, 1999. View at Scopus
  4. C. H. Walters, V. J. Pezoldt, K. N. Womack, S. A. Cooner, and B. T. Kuhn, “Understanding road rage: summary of first-year project activities,” Tech. Rep. TX-01/4945-1, Texas Transportation Institute, 2000.
  5. A. Tarko and S. Venugopal, “Safety and capacity evaluation of the Indiana lane merge system,” FHWA/iN/JTRP/-2000/19, Purdue University, West Lafayette, Ind, USA, 2001.
  6. T. Datta, K. Schattler, P. Kar, and A. Guha, “Development and Evaluation of an advanced dynamic lane merge traffic control system for 3 to 2 lane transition areas in work zones,” Report RC-1451, Michigan Department of Transportation, 2004.
  7. A. G. Beacher, M. D. Fontaine, and N. J. Garber, “Field evaluation of late merge traffic control in work zones,” Transportation Research Record, no. 1911, pp. 33–41, 2005. View at Scopus
  8. A. G. Beacher, M. D. Fontaine, and N. J. Garber, “Guidelines for using late merge traffic control in work zones: results of a simulation-based study,” Transportation Research Record, no. 1911, pp. 42–50, 2005. View at Scopus
  9. S. Ishaka, Y. Qi, and P. Rayaproluc, “Safety evaluation of joint and conventional lane merge configurations for freeway work zones,” Traffic Injury Prevention, vol. 13, no. 2, pp. 199–208, 2012. View at Publisher · View at Google Scholar
  10. N. Yang, G. L. Chang, and K. P. Kang, “Simulation-based study on a lane-based signal system for merge control at freeway work zones,” Journal of Transportation Engineering, vol. 135, no. 1, pp. 9–17, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. K. P. Kang and G. L. Chang, “Lane-based dynamic merge control strategy based on optimal thresholds for highway work zone operations,” Journal of Transportation Engineering, vol. 135, no. 6, pp. 359–370, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. S. Wolfram, Theory and Applications of Cellular Automata, World Scientific, Singapore, 1986. View at Zentralblatt MATH · View at MathSciNet
  13. S. Wolfram, A New Kind of Science, Wolfram Media, Champaign, Ill, USA, 2002. View at Zentralblatt MATH · View at MathSciNet
  14. K. Nagel and M. Schreckenberg, “A cellular automaton model for freeway traffic,” Journal de Physique, vol. 2, no. 12, pp. 2221–2229, 1992. View at Publisher · View at Google Scholar
  15. N. Duffield, C. Lund, and M. Thorup, “Estimating flow distributions from sampled flow statistics,” IEEE/ACM Transactions on Networking, vol. 13, no. 5, pp. 933–946, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. W. H. Wang, W. Zhang, H. W. Guo, H. Bubb, and K. Ikeuchi, “A safety-based behavioural approaching model with various driving characteristics,” Transportation Research C, vol. 19, no. 6, pp. 1202–1214, 2011. View at Publisher · View at Google Scholar
  17. W. Wang, F. Hou, H. Tan, and H. Bubb, “A framework for function allocations in intelligent driver interface design for comfort and safety,” International Journal of Computational Intelligence Systems, vol. 3, no. 5, pp. 531–541, 2010. View at Scopus