About this Journal Submit a Manuscript Table of Contents
Discrete Dynamics in Nature and Society
Volume 2013 (2013), Article ID 408904, 10 pages
http://dx.doi.org/10.1155/2013/408904
Research Article

Bifurcation and Chaos in a Price Game of Irrigation Water in a Coastal Irrigation District

Baogui Xin1,2 and Yuting Li1,3

1Nonlinear Science Center, School of Economics and Management, Shandong University of Science and Technology, Qingdao 266590, China
2Nonlinear Dynamics and Chaos Group, School of Management, Tianjin University, Tianjin 300072, China
3College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao 266590, China

Received 8 March 2013; Accepted 17 April 2013

Academic Editor: Qingdu Li

Copyright © 2013 Baogui Xin and Yuting Li. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. Merrey, R. Meinzen-Dick, P. Mollinga, and E. Karar, “Policy and institutional reform processes for sustainable agricultural water management: the art of the possible,” in Water for Food Water for Life: A Comprehensive Assessment of Water Management in Agriculture, D. Molden, Ed., pp. 193–232, Earthscan, London, UK, 2007.
  2. R. Meinzen-Dick, “Beyond panaceas in water institutions,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 39, pp. 15200–15205, 2007.
  3. W. Shaw, Water Resource Economics And Policy: An Introduction, Edward Elgar, Cheltenham, UK, 2005.
  4. R. Griffin, Water Resource Economics: The Analysis of Scarcity, Policies, and Projects, MIT Press, Cambridge, Mass, USA, 2006.
  5. R. Johansson, Y. Tsur, T. Roe, R. Doukkali, and A. Dinar, “Pricing irrigation water: a review of theory and practice,” Water Policy, vol. 4, no. 2, pp. 173–199, 2002. View at Publisher · View at Google Scholar
  6. K. Schoengold, “Irrigation water pricing: the gap between theory and practice,” American Journal of Agricultural Economics, vol. 92, no. 5, pp. 1497–1498, 2010. View at Publisher · View at Google Scholar
  7. B. Xin, J. Ma, and Q. Gao, “Complex dynamics of an adnascent-type game model,” Discrete Dynamics in Nature and Society, vol. 2008, Article ID 467972, 12 pages, 2008. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  8. B. Xin and T. Chen, “Master-slave bertrand game model,” Economic Modelling, vol. 28, no. 4, pp. 1864–1870, 2011. View at Publisher · View at Google Scholar
  9. W. Ji and D. Xu, “Complexity of discrete investment competition model based on heterogeneous participants,” International Journal of Computer Mathematics, vol. 89, no. 4, pp. 492–498, 2012. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  10. T. Puu, “Chaos in business cycles,” Chaos, Solitons and Fractals, vol. 1, no. 5, pp. 457–473, 1991. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  11. G. Bischi, A. Naimzada, and L. Sbragia, “Oligopoly games with local monopolistic approximation,” Journal of Economic Behavior & Organization, vol. 62, no. 3, pp. 371–388, 2007.
  12. H. N. Agiza and A. A. Elsadany, “Nonlinear dynamics in the Cournot duopoly game with heterogeneous players,” Physica A, vol. 320, no. 1–4, pp. 512–524, 2003. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  13. J. Wouter and H. Den, “The importance of the number of different agents in a heterogeneous asset-pricing model,” Journal of Economic Dynamics & Control, vol. 25, no. 5, pp. 721–746, 2001. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  14. A. Elsadany, “Competition analysis of a triopoly game with bounded rationality,” Chaos Solitons & Fractals, vol. 45, no. 11, pp. 1343–1348, 2012.
  15. W. Ji, “Chaos and control of game model based on heterogeneous expectations in electric power triopoly,” Discrete Dynamics in Nature and Society, vol. 2009, Article ID 469564, 8 pages, 2009. View at Publisher · View at Google Scholar
  16. Y. Son, R. Baldick, K. Lee, and S. Siddiqi, “Short-term electricity market auction game analysis: uniform and pay-as-bid pricing,” IEEE Transactions on Power Systems, vol. 19, pp. 1990–1998, 2004. View at Publisher · View at Google Scholar
  17. C. C. Skoulidas, C. D. Vournas, and G. P. Papavassilopoulos, “An adaptive learning game model for interacting electric power markets,” Infor, vol. 48, no. 4, pp. 261–266, 2010. View at Publisher · View at Google Scholar · View at MathSciNet
  18. L. Mu, P. Liu, Y. Li, and J. Zhang, “Complexity of a real estate game model with a nonlinear demand function,” International Journal of Bifurcation and Chaos, vol. 21, no. 11, pp. 3171–3179, 2011. View at Publisher · View at Google Scholar
  19. L. Mu, J. Ma, and L. Chen, “A 3-dimensional discrete model of housing price and its inherent complexity analysis,” Journal of Systems Science & Complexity, vol. 22, no. 3, pp. 415–421, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  20. X. Liu, X. Liang, and B. Tang, “Minority game and anomalies in financial markets,” Physica A, vol. 333, pp. 343–352, 2004. View at Publisher · View at Google Scholar
  21. K. Gkonis and H. Psaraftis, “The LNG market: a game theoretic approach to competition in LNG shipping,” Maritime Economics & Logistics, vol. 11, pp. 227–246, 2009.
  22. Z. Sun and J. Ma, “Complexity of triopoly price game in Chinese cold rolled steel market,” Nonlinear Dynamics, vol. 67, no. 3, pp. 2001–2008, 2012. View at Publisher · View at Google Scholar · View at MathSciNet
  23. S. Sugawara and Y. Omori, “Duopoly in the Japanese airline market: bayesian estimation for the entry game,” The Japanese Economic Review, vol. 63, no. 3, pp. 310–332, 2012. View at Publisher · View at Google Scholar · View at MathSciNet
  24. S. Chung, R. Weaver, and T. Friesz, “Oligopolies in pollution permit markets: a dynamic game approach,” International Journal of Production Economics, vol. 140, no. 1, pp. 48–56, 2012. View at Publisher · View at Google Scholar
  25. J. Ma and J. Zhang, “Price game and chaos control among three oligarchs with dierent rationalities in property insurance market,” Chaos, vol. 22, no. 4, Article ID 043120, 2012. View at Publisher · View at Google Scholar
  26. F. Tramontana and A. E. A. Elsadany, “Heterogeneous triopoly game with isoelastic demand function,” Nonlinear Dynamics, vol. 68, no. 1-2, pp. 187–193, 2012. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  27. J. Du, T. Huang, and Z. Sheng, “Analysis of decision-making in economic chaos control,” Nonlinear Analysis, vol. 10, no. 4, pp. 2493–2501, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  28. W. Huang, “The long-run benefits of chaos to oligopolistic firms,” Journal of Economic Dynamics & Control, vol. 32, no. 4, pp. 1332–1355, 2008. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  29. J. Zhang, Q. Da, and Y. Wang, “The dynamics of Bertrand model with bounded rationality,” Chaos, Solitons and Fractals, vol. 39, no. 5, pp. 2048–2055, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  30. M. Kopel, “Simple and complex adjustment dynamics in Cournot duopoly models,” Chaos, Solitons and Fractals, vol. 7, no. 12, pp. 2031–2048, 1996. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  31. F. Tramontana, L. Gardini, and T. Puu, “Cournot duopoly when the competitors operate multiple production plants,” Journal of Economic Dynamics & Control, vol. 33, no. 1, pp. 250–265, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  32. F. Tramontana, “Heterogeneous duopoly with isoelastic demand function,” Economic Modelling, vol. 27, no. 1, pp. 350–357, 2010. View at Publisher · View at Google Scholar
  33. G. A. Gottwald and I. Melbourne, “On the implementation of the 0-1 test for chaos,” SIAM Journal on Applied Dynamical Systems, vol. 8, no. 1, pp. 129–145, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  34. G. A. Gottwald and I. Melbourne, “On the validity of the 0-1 test for chaos,” Nonlinearity, vol. 22, no. 6, pp. 1367–1382, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  35. G. Gottwald and I. Melbourne, “Comment on Reliability of the 0-1 test for chaos,” Physical Review E, vol. 77, no. 2, part 2, 3 pages, 2008.
  36. I. Falconer, G. A. Gottwald, I. Melbourne, and K. Wormnes, “Application of the 0-1 test for chaos to experimental data,” SIAM Journal on Applied Dynamical Systems, vol. 6, no. 2, pp. 395–402, 2007. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  37. K. Sun, X. Liu, and C. Zhu, “The 0-1 test algorithm for chaos and its applications,” Chinese Physics B, vol. 19, no. 11, Article ID 110510, 2010. View at Publisher · View at Google Scholar
  38. L. Yuan and Q. Yang, “A proof for the existence of chaos in diffusively coupled map lattices with open boundary conditions,” Discrete Dynamics in Nature and Society, vol. 2011, Article ID 174376, 16 pages, 2011. View at Publisher · View at Google Scholar
  39. W. Govaerts and A. Y. Kuznetsov, “Matcont: a Matlab software project for the numerical continuation and bifurcation study of continuous and discrete parameterized dynamical systems,” http://sourceforge.net.
  40. W. Govaerts, R. K. Ghaziani, Yu. A. Kuznetsov, and H. G. E. Meijer, “Numerical methods for two-parameter local bifurcation analysis of maps,” SIAM Journal on Scientific Computing, vol. 29, no. 6, pp. 2644–2667, 2007. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  41. W. Govaerts and R. K. Ghaziani, “Stable cycles in a Cournot duopoly model of Kopel,” Journal of Computational and Applied Mathematics, vol. 218, no. 2, pp. 247–258, 2008. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  42. R. K. Ghaziani, W. Govaerts, and C. Sonck, “Resonance and bifurcation in a discrete-time predator-prey system with Holling functional response,” Nonlinear Analysis, vol. 13, no. 3, pp. 1451–1465, 2012. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  43. R. K. Ghaziani, W. Govaerts, and C. Sonck, “Codimension-two bifurcations of fixed points in a class of discrete prey-predator systems,” Discrete Dynamics in Nature and Society, vol. 2011, Article ID 862494, 27 pages, 2011. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  44. R. Gibbons, A Primer in Game Theory, Simon and Schuster, New York, NY, USA, 1992.
  45. A. Dixit, “Comparative statics for oligopoly,” International Economic Review, vol. 27, no. 1, pp. 107–122, 1986. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  46. G. Bischi and M. Kopel, “Equilibrium selection in a nonlinear duopoly game with adaptive expectations,” Journal of Economic Behavior & Organization, vol. 46, pp. 73–100, 2001.
  47. G. Wen, “Criterion to identify Hopf bifurcations in maps of arbitrary dimension,” Physical Review E, vol. 72, no. 2, Article ID 026201, p. 4, 2005. View at Publisher · View at Google Scholar · View at MathSciNet
  48. G. Wen, D. Xu, and X. Han, “On creation of Hopf bifurcations in discrete-time nonlinear systems,” Chaos, vol. 12, no. 2, pp. 350–355, 2002. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  49. Q. Lu, Bifurcation and Singularity, Shanghai Scientific and Technological Education Publishing House, Shanghai, China, 1995.
  50. Y. A. Kuznetsov, Elements of Applied Bifurcation Theory, vol. 112 of Applied Mathematical Sciences, Springer, New York, NY, USA, 2nd edition, 1998. View at MathSciNet
  51. E. L. Allgower and K. Georg, Numerical Continuation Methods, vol. 13 of Springer Series in Computational Mathematics, Springer, Berlin, Germany, 1990. View at Publisher · View at Google Scholar · View at MathSciNet
  52. A. Wolf, J. B. Swift, H. L. Swinney, and J. A. Vastano, “Determining Lyapunov exponents from a time series,” Physica D, vol. 16, no. 3, pp. 285–317, 1985. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet