About this Journal Submit a Manuscript Table of Contents
Discrete Dynamics in Nature and Society
Volume 2013 (2013), Article ID 537675, 7 pages
http://dx.doi.org/10.1155/2013/537675
Research Article

An Inventory Controlled Supply Chain Model Based on Improved BP Neural Network

Research Center of Cluster and Enterprise Development, School of Business Administration, Jiangxi University of Finance & Economics, Nanchang 330013, China

Received 22 June 2013; Revised 8 September 2013; Accepted 10 October 2013

Academic Editor: Zhigang Jiang

Copyright © 2013 Wei He. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. W. Balsmeier and W. J. Voisin, “Supply chain management: a time-based strategy,” Industrial Management, vol. 38, no. 5, pp. 24–27, 1996. View at Scopus
  2. S. Minner, “Multiple-supplier inventory models in supply chain management: a review,” International Journal of Production Economics, vol. 81-82, pp. 265–279, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. K. Bansal, S. Vadhavkar, and A. Gupta, “Brief application description. A neural networks based forecasting techniques for inventory control applications,” Data Mining and Knowledge Discovery, vol. 2, no. 1, pp. 97–102, 1998. View at Scopus
  4. J. Shanmugasundaram, M. V. N. Prasad, S. Vadhavkar, and A. Gupta, “Use of recurrent neural networks for strategic data mining of sales information,” MIT Sloan 4347-02; Eller College Working Paper 1029-05, 2002.
  5. C. C. Reyes-Aldasoro, A. R. Ganguly, G. Lemus, and A. Gupta, “A hybrid model based on dynamic programming, neural networks, and surrogate value for inventory optimisation applications,” Journal of the Operational Research Society, vol. 50, no. 1, pp. 85–94, 1999. View at Scopus
  6. S. R. Hong, S. T. Kim, and C. O. Kim, “Neural network controller with on-line inventory feedback data in RFID-enabled supply chain,” International Journal of Production Research, vol. 48, no. 9, pp. 2613–2632, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. F. Y. Partovi and M. Anandarajan, “Classifying inventory using an artificial neural network approach,” Computers and Industrial Engineering, vol. 41, no. 4, pp. 389–404, 2002. View at Scopus
  8. J. Li, Y. Li, J. Xu, and J. Zhang, “Parallel training algorithm of BP neural networks,” in Proceedings of the 3rd World Congress on Intelligent Control and Automation, vol. 2, pp. 872–876, July 2000. View at Scopus
  9. D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning internal representations by error propagation,” in Parallel Distributed Processing: Explorations in the Microstructure of Cognition, D. E. Rumelhart and J. L. McClelland, Eds., vol. 1, chapter 8, MIT Press, Cambridge, Mass, USA, 1986.
  10. N. Ampazis and S. J. Perantonis, “Two highly efficient second-order algorithms for training feedforward networks,” IEEE Transactions on Neural Networks, vol. 13, no. 5, pp. 1064–1074, 2002. View at Publisher · View at Google Scholar · View at Scopus
  11. K. Zhang, J. Xu, and J. Zhang, “A new adaptive inventory control method for supply chains with non-stationary demand,” in Proceedings of the 25th Control and Decision Conference (CCDC '13), pp. 1034–1038, Guiyang , China, May 2013. View at Publisher · View at Google Scholar
  12. W. P. Wang, “A neural network model on the forecasting of inventory risk management of spare parts,” in Proceedings of the International Conference on Information Technology and Management Science (ICITMS '12), pp. 295–302, Springer, 2012.
  13. A. Mansur and T. Kuncoro, “Product inventory predictions at small medium enterprise using market basket analysis approach-neural networks,” Procedia Economics and Finance, vol. 4, pp. 312–320, 2012. View at Publisher · View at Google Scholar
  14. Y. Huang, D. X. Sun, G. P. Xing, and H. Chang, “Criticality evaluation for spare parts based on BP neural network,” in Proceedings of the International Conference on Artificial Intelligence and Computational Intelligence (AICI '10), vol. 1, pp. 204–206, October 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. Z. Zheng, “Review on development of BP neural network,” Shanxi Electronic Technology, no. 2, pp. 90–92, 2008.
  16. H. Yu, W. Q. Wu, and L. Cao, “Improved BP algorithm and its application,” Computer Knowledge and Technology, vol. 19, no. 5, pp. 5256–5258, 2009.
  17. D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations by back-propagating errors,” Nature, vol. 323, no. 6088, pp. 533–536, 1986. View at Scopus
  18. T. P. Vogl, J. K. Mangis, A. K. Rigler, W. T. Zink, and D. L. Alkon, “Accelerating the convergence of the back-propagation method,” Biological Cybernetics, vol. 59, no. 4-5, pp. 257–263, 1988. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Riedmiller and H. Braun, “Direct adaptive method for faster backpropagation learning: the RPROP Algorithm,” in Proceedings of the IEEE International Conference on Neural Networks (ICNN '93), vol. 1, pp. 586–591, San Francisco, Calif, USA, April 1993. View at Scopus
  20. C. Charalambous, “Conjugate gradient algorithm for efficient training of artificial neural networks,” IEE Proceedings G, vol. 139, no. 3, pp. 301–310, 1992. View at Scopus
  21. M. F. Møller, “A scaled conjugate gradient algorithm for fast supervised learning,” Neural Networks, vol. 6, no. 4, pp. 525–533, 1993. View at Scopus
  22. F. D. Foresee and M. T. Hagan, “Gauss-Newton approximation to Bayesian learning,” in Proceedings of the IEEE International Conference on Neural Networks, pp. 1930–1935, June 1997. View at Scopus
  23. R. Battiti, “First and second order methods for learning: between steepest descent and newton's method,” Neural Computation, vol. 4, no. 2, pp. 141–166, 1992. View at Publisher · View at Google Scholar
  24. Y. Gao, “Study on optimization algorithm of BP neural network,” Computer Knowledge and Technology, vol. 29, no. 5, pp. 8248–8249, 2009.
  25. S. Shah and F. Palmieri, “MEKA-A fast, local algorithm for training feed forward neural networks,” in Proceedings of the International Joint Conference on Neural Networks, pp. 41–46, June 1990. View at Scopus
  26. X. P. Wang, Y. Shi, J. B. Ruan, and H. Y. Shang, “Study on the inventory forecasting in supply chains based on rough set theory and improved BP neural network,” in Advances in Intelligent Decision Technologies Smart Innovation, Systems and Technologies, vol. 4, pp. 215–225, Springer, Berlin, Germany, 2010.
  27. H. Lican, Z. Yuhong, X. Xin, and F. Fan, “Prediction of investment on inventory clearance based on improved BP neural network,” in Proceedings of the 1st International Conference on Networking and Distributed Computing (ICNDC '10), pp. 73–75, Hangzhou, China, October 2010. View at Publisher · View at Google Scholar · View at Scopus