About this Journal Submit a Manuscript Table of Contents
Discrete Dynamics in Nature and Society
Volume 2013 (2013), Article ID 673829, 12 pages
http://dx.doi.org/10.1155/2013/673829
Research Article

A Reliable Analytical Method for Solving Higher-Order Initial Value Problems

1Department of Mathematics, Faculty of Science, Al Balqa Applied University, Salt 19117, Jordan
2Department of Mechatronics Engineering, Faculty of Engineering, University of Jordan, Amman 11942, Jordan
3Department of Mathematics, Faculty of Science, The Hashemite University, Zarqa 13115, Jordan
4Department of Mathematics, Faculty of Science, University of Jordan, Amman 11942, Jordan

Received 2 July 2013; Accepted 23 September 2013

Academic Editor: Recai Kilic

Copyright © 2013 Omar Abu Arqub et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. O. Abu Arqub, A. El-Ajou, A. Bataineh, and I. Hashim, “A representation of the exact solution of generalized Lane-Emden equations using a new analytical method,” Abstract and Applied Analysis, vol. 2013, Article ID 378593, 10 pages, 2013. View at Publisher · View at Google Scholar
  2. O. Abu Arqub, “Series solution of fuzzy differential equations under strongly generalized differentiability,” Journal of Advanced Research in Applied Mathematics, vol. 5, no. 1, pp. 31–52, 2013. View at Publisher · View at Google Scholar · View at MathSciNet
  3. A. S. Bataineh, M. S. M. Noorani, and I. Hashim, “Direct solution of nth-order IVPs by homotopy analysis method,” Differential Equations and Nonlinear Mechanics, vol. 2009, Article ID 842094, 15 pages, 2009. View at Publisher · View at Google Scholar · View at MathSciNet
  4. I. H. Abdel-Halim Hassan, “Differential transformation technique for solving higher-order initial value problems,” Applied Mathematics and Computation, vol. 154, no. 2, pp. 299–311, 2004. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  5. K. Al-Khaled and M. N. Anwar, “Numerical comparison of methods for solving second-order ordinary initial value problems,” Applied Mathematical Modelling, vol. 31, pp. 292–301, 2007. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  6. A. H. Bhrawy and W. M. Abd-Elhameed, “New algorithm for the numerical solutions of nonlinear third-order differential equations using Jacobi-Gauss collocation method,” Mathematical Problems in Engineering, vol. 2011, Article ID 837218, 14 pages, 2011. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  7. D. Gámez, A. I. Garralda Guillem, and M. Ruiz Galán, “Nonlinear initial-value problems and Schauder bases,” Nonlinear Analysis. Theory, Methods & Applications, vol. 63, no. 1, pp. 97–105, 2005. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  8. M. Lakestani and M. Dehghan, “Numerical solution of Riccati equation using the cubic B-spline scaling functions and Chebyshev cardinal functions,” Computer Physics Communications, vol. 181, no. 5, pp. 957–966, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  9. D. Gámez, A. I. Garralda Guillem, and M. R. Galán, “High-order nonlinear initial-value problems countably determined,” Journal of Computational and Applied Mathematics, vol. 228, no. 1, pp. 77–82, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  10. F. Geng, M. Cui, and B. Zhang, “Method for solving nonlinear initial value problems by combining homotopy perturbation and reproducing kernel Hilbert space methods,” Nonlinear Analysis. Real World Applications, vol. 11, no. 2, pp. 637–644, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  11. M. Podisuk, U. Chundang, and W. Sanprasert, “Single step formulas and multi-step formulas of the integration method for solving the initial value problem of ordinary differential equation,” Applied Mathematics and Computation, vol. 190, no. 2, pp. 1438–1444, 2007. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  12. A. A. Kosti, Z. A. Anastassi, and T. E. Simos, “An optimized explicit Runge-Kutta-Nyström method for the numerical solution of orbital and related periodical initial value problems,” Computer Physics Communications, vol. 183, no. 3, pp. 470–479, 2012. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  13. A. El-Ajou, O. Abu Arqub, and S. Momani, “Homotopy analysis method for second-order boundary value problems of integrodifferential equations,” Discrete Dynamics in Nature and Society, vol. 2013, Article ID 365792, 18 pages, 2012. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  14. O. Abu Arqub, A. El-Ajou, S. Momani, and N. Shawagfeh, “Analytical solutions of fuzzy initial value problems by HAM,” Applied Mathematics and Information Sciences, vol. 7, pp. 1903–1919, 2013. View at Publisher · View at Google Scholar
  15. O. Abu Arqub, M. Al-Smadi, and S. Momani, “Application of reproducing kernel method for solving nonlinear Fredholm-Volterra integrodifferential equations,” Abstract and Applied Analysis, vol. 2013, Article ID 839836, 16 pages, 2012. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  16. M. Al-Smadi, O. Abu Arqub, and S. Momani, “A computational method for two-point boundary value problems of fourth-order mixed integrodifferential equations,” Mathematical Problems in Engineering, vol. 2013, Article ID 832074, 10 pages, 2013. View at Publisher · View at Google Scholar · View at MathSciNet
  17. O. A. Arqub, M. Al-Smadi, and N. Shawagfeh, “Solving Fredholm integro-differential equations using reproducing kernel Hilbert space method,” Applied Mathematics and Computation, vol. 219, no. 17, pp. 8938–8948, 2013. View at Publisher · View at Google Scholar · View at MathSciNet
  18. N. Shawagfeh, O. Abu Arqub, and S. Momani, “Analytical solution of nonlinear second-order periodic boundary value problem using reproducing kernel method,” Journal of Computational Analysis and Applications. In press. View at Publisher · View at Google Scholar
  19. O. Abu Arqub, Z. Abo-Hammour, S. Momani, and N. Shawagfeh, “Solving singular two-point boundary value problems using continuous genetic algorithm,” Abstract and Applied Analysis, vol. 2012, Article ID 205391, 25 pages, 2012. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  20. O. Abu Arqub, Z. Abo-Hammour, and S. Momani, “Application of continuous genetic algorithm for nonlinear system of second-order boundary value problems,” Applied Mathematics and Information Sciences, vol. 8, pp. 1–14, 2014. View at Publisher · View at Google Scholar
  21. R. Genesio and A. Tesi, “Harmonic balance methods for the analysis of chaotic dynamics in nonlinear systems,” Automatica, vol. 28, pp. 531–548, 1992. View at Publisher · View at Google Scholar
  22. A. Gökdoğan, M. Merdan, and A. Yildirim, “The modified algorithm for the differential transform method to solution of Genesio systems,” Communications in Nonlinear Science and Numerical Simulation, vol. 17, no. 1, pp. 45–51, 2012. View at Publisher · View at Google Scholar · View at MathSciNet
  23. F. Jianwen, H. Ling, X. Chen, F. Austin, and W. Geng, “Synchronizing the noise-perturbed Genesio chaotic system by sliding mode control,” Communications in Nonlinear Science and Numerical Simulation, vol. 15, no. 9, pp. 2546–2551, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  24. X. Wu, Z.-H. Guan, Z. Wu, and T. Li, “Chaos synchronization between Chen system and Genesio system,” Physics Letters A, vol. 364, no. 6, pp. 484–487, 2007. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  25. A. Ghorbani and J. Saberi-Nadjafi, “A piecewise-spectral parametric iteration method for solving the nonlinear chaotic Genesio system,” Mathematical and Computer Modelling, vol. 54, no. 1-2, pp. 131–139, 2011. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  26. J. Guckenheimer, “Dynamics of the van der Pol equation,” IEEE Transactions on Circuits and Systems, vol. 27, no. 11, pp. 983–989, 1980. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  27. Z. F. Zhang, T. Ding, and H. W. Huang, Qualitative Theory of Differential Equations, Science Press, Peking, China, 1985.
  28. J. K. Hale, Ordinary Differential Equations, Wiley, New York, NY, USA, 1969. View at MathSciNet
  29. Z. Feng, “On explicit exact solutions for the Lienard equation and its applications,” Physics Letters A, vol. 293, no. 1-2, pp. 50–56, 2002. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  30. D. X. Kong, “Explicit exact solutions for the Liénard equation and its applications,” Physics Letters A, vol. 196, no. 5-6, pp. 301–306, 1995. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  31. J. Sun, W. Wang, and L. Wu, “On explicit exact solutions for the Liénard equation and its applications,” Physics Letters A, vol. 318, no. 1-2, pp. 93–101, 2003. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  32. M. Matinfar, H. Hosseinzadeh, and M. Ghanbari, “A numerical implementation of the variational iteration method for the Lienard equation,” World Journal of Modelling and Simulation, vol. 4, pp. 205–210, 2008.
  33. D. Kaya and S. M. El-Sayed, “A numerical implementation of the decomposition method for the Lienard equation,” Applied Mathematics and Computation, vol. 171, no. 2, pp. 1095–1103, 2005. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  34. R. Buckmire, “Investigations of nonstandard, Mickens-type, finite-difference schemes for singular boundary value problems in cylindrical or spherical coordinates,” Numerical Methods for Partial Differential Equations, vol. 19, no. 3, pp. 380–398, 2003. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  35. Y. Aregbesola, “Numerical solution of Bratu problem using the method of weighted residual,” Electronic Journal of Southern African Mathematical Sciences Association, vol. 3, pp. 1–7, 2003.
  36. D. A. F. Kamenetski, Diffusion and Heat Exchange in Chemical Kinetics, Princeton University Press, Princeton, NJ, USA, 1955.
  37. I. H. Abdel-Halim Hassan and V. S. Ertürk, “Applying differential transformation method to the one-dimensional planar Bratu problem,” International Journal of Contemporary Mathematical Sciences, vol. 2, no. 29–32, pp. 1493–1504, 2007. View at Zentralblatt MATH · View at MathSciNet
  38. H. Caglar, N. Caglar, M. Özer, A. Valaristos, A. N. Miliou, and A. N. Anagnostopoulos, “Dynamics of the solution of Bratu's equation,” Nonlinear Analysis. Theory, Methods & Applications, vol. 71, no. 12, pp. e672–e678, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  39. S. G. Venkatesh, S. K. Ayyaswamy, and G. Hariharan, “Haar wavelet method for solving initial and boundary value problems of Bratu-type,” World Academy of Science, Engineering and Technology, vol. 67, pp. 565–568, 2010.
  40. S. Abbasbandy, M. S. Hashemi, and C.-S. Liu, “The Lie-group shooting method for solving the Bratu equation,” Communications in Nonlinear Science and Numerical Simulation, vol. 16, no. 11, pp. 4238–4249, 2011. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  41. A.-M. Wazwaz, “Adomian decomposition method for a reliable treatment of the Bratu-type equations,” Applied Mathematics and Computation, vol. 166, no. 3, pp. 652–663, 2005. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  42. T. Öziş and A. Yıldırım, “Comparison between Adomian's method and He's homotopy perturbation method,” Computers & Mathematics with Applications, vol. 56, no. 5, pp. 1216–1224, 2008. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  43. B. Batiha, “Numerical solution of Bratu-type equations by the variational iteration method,” Hacettepe Journal of Mathematics and Statistics, vol. 39, no. 1, pp. 23–29, 2010. View at Zentralblatt MATH · View at MathSciNet
  44. Y. Aksoy and M. Pakdemirli, “New perturbation-iteration solutions for Bratu-type equations,” Computers & Mathematics with Applications, vol. 59, no. 8, pp. 2802–2808, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet