About this Journal Submit a Manuscript Table of Contents
Discrete Dynamics in Nature and Society
Volume 2013 (2013), Article ID 703826, 11 pages
http://dx.doi.org/10.1155/2013/703826
Research Article

Global Dynamic Behavior of a Multigroup Cholera Model with Indirect Transmission

1Department of Mathematics, North University of China, Taiyuan, Shan'xi 030051, China
2Complex Systems Center, Shanxi University, Taiyuan, Shan'xi 030006, China
3Institute of Information Economy, Hangzhou Normal University, Hangzhou, Zhejiang 310036, China
4School of Mathematical Sciences, Fudan University, Shanghai 200433, China

Received 4 October 2013; Accepted 7 November 2013

Academic Editor: Antonia Vecchio

Copyright © 2013 Ming-Tao Li et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. A. Jensen, S. M. Faruque, J. J. Mekalanos, and B. R. Levin, “Modeling the role of bacteriophage in the control of cholera outbreaks,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 12, pp. 4652–4657, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. A. K. Misra and V. Singh, “A delay mathematical model for the spread and control of water borne diseases,” Journal of Theoretical Biology, vol. 301, pp. 49–56, 2012. View at Publisher · View at Google Scholar · View at MathSciNet
  3. C. Torres Codeço, “Endemic and epidemic dynamics of cholera: the role of the aquatic reservoir,” BMC Infectious Diseases, vol. 1, article 1, 2001. View at Publisher · View at Google Scholar · View at Scopus
  4. M. Pascual, M. J. Bouma, and A. P. Dobson, “Cholera and climate: revisiting the quantitative evidence,” Microbes and Infection, vol. 4, no. 2, pp. 237–245, 2002. View at Publisher · View at Google Scholar · View at Scopus
  5. D. M. Hartley, J. G. Morris Jr., and D. L. Smith, “Hyperinfectivity: a critical element in the ability of V. cholerae to cause epidemics?” PLoS Medicine, vol. 3, no. 1, pp. 63–69, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. Z. Mukandavire, S. Liao, J. Wang, H. Gaff, D. L. Smith, and J. G. Morris Jr., “Estimating the reproductive numbers for the 2008-2009 cholera outbreaks in Zimbabwe,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 21, pp. 8767–8772, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. Z. Mukandavire, D. L. Smith, and J. G. Morris Jr., “Cholera in Haiti: reproductive numbers and vaccination coverage estimates,” Scientific Reports, vol. 3, article 997, 2013.
  8. W. Z. Huang, K. L. Cooke, and C. Castillo-Chavez, “Stability and bifurcation for a multiple-group model for the dynamics of HIV/AIDS transmission,” SIAM Journal on Applied Mathematics, vol. 52, no. 3, pp. 835–854, 1992. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  9. Z. Feng and J. X. Velasco-Hernández, “Competitive exclusion in a vector-host model for the dengue fever,” Journal of Mathematical Biology, vol. 35, no. 5, pp. 523–544, 1997. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  10. C. Bowman, A. B. Gumel, P. Van den Driessche, J. Wu, and H. Zhu, “A mathematical model for assessing control strategies against West Nile virus,” Bulletin of Mathematical Biology, vol. 67, pp. 1107–1133, 2005.
  11. R. Edwards, S. Kim, and P. van den Driessche, “A multigroup model for a heterosexually transmitted disease,” Mathematical Biosciences, vol. 224, pp. 87–94, 2010.
  12. A. Lajmanovich and J. A. York, “A deterministic model for gonorrhea in a nonhomogeneous population,” Mathematical Biosciences, vol. 28, pp. 221–236, 1976.
  13. H. W. Hethcote, “An immunization model for a heterogeneous population,” Theoretical Population Biology, vol. 14, no. 3, pp. 338–349, 1978. View at Scopus
  14. H. R. Thieme, “Local stability in epidemic models for heterogeneous populations,” in Mathematics in Biology and Medicine, V. Capasso, E. Grosso, and S. L. Paveri-Fontana, Eds., vol. 57 of Lecture Notes in Biomathematics, pp. 185–189, Springer, 1985.
  15. H. Guo, M. Y. Li, and Z. Shuai, “Global stability of the endemic equilibrium of multigroup SIR epidemic models,” Canadian Applied Mathematics Quarterly, vol. 14, pp. 259–284, 2006.
  16. Z. Yuan and L. Wang, “Global stability of epidemiological models with group mixing and nonlinear incidence rates,” Nonlinear Analysis. Real World Applications, vol. 11, no. 2, pp. 995–1004, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. R. Sun and J. Shi, “Global stability of multigroup epidemic model with group mixing and nonlinear incidence rates,” Applied Mathematics and Computation, vol. 218, pp. 280–286, 2011.
  18. M. Y. Li, Z. Shuai, and C. Wang, “Global stability of multi-group epidemic models with distributed delays,” Journal of Mathematical Analysis and Applications, vol. 361, pp. 38–47, 2010.
  19. H. Shu, D. Fan, and J. Wei, “Global stability of multi-group SEIR epidemic models with distributed delays and nonlinear transmission,” Nonlinear Analysis. Real World Applications, vol. 13, no. 4, pp. 1581–1592, 2012. View at Publisher · View at Google Scholar · View at Scopus
  20. O. Diekmann, J. A. Heesterbeek, and J. A. Metz, “On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations,” Journal of Mathematical Biology, vol. 28, no. 4, pp. 365–382, 1990. View at Scopus
  21. P. van den Driessche and J. Watmough, “Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission,” Mathematical Biosciences, vol. 180, pp. 29–48, 2002. View at Publisher · View at Google Scholar · View at Scopus
  22. O. Diekmann, J. A. P. Heesterbeek, and M. G. Roberts, “The construction of next-generation matrices for compartmental epidemic models,” Journal of the Royal Society Interface, vol. 7, no. 47, pp. 873–885, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. H. L. Smith and P. Waltman, The Theory of the Chemostat, Cambridge University Press, 1995.
  24. H.R. Thieme, “Convergence results and a Poincaré-Bendixson trichotomy for asymptotically autonomous differential equations,” Journal of Mathematical Biology, vol. 30, pp. 755–763, 1992.
  25. X. Q. Zhao and Z. J. Jing, “Global asymptotic behavior in some cooperative systems of functional differential equations,” Canadian Applied Mathematics Quarterly, vol. 4, pp. 421–444, 1996.
  26. H. R. Thieme, “Persistence under relaxed point-dissipativity (with application to an endemic model),” Mathematical Biosciences, vol. 166, pp. 407–435, 1993.
  27. X. Q. Zhao, “Uniform persistence and periodic coexistence states in infinitedimensional periodic semiflows with applications,” Canadian Applied Mathematics Quarterly, vol. 3, pp. 473–495, 1995.
  28. W. D. Wang and X.-Q. Zhao, “An epidemic model in a patchy environment,” Mathematical Biosciences, vol. 190, no. 1, pp. 97–112, 2004. View at Publisher · View at Google Scholar · View at Scopus
  29. H. Guo, M. Y. Li, and Z. Shuai, “A graph-theoretic approach to the method of global Lyapunov functions,” Proceedings of the American Mathematical Society, vol. 136, no. 8, pp. 2793–2802, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. J. W. Moon, Counting Labelled Trees, Canadian Mathematical Congress, Montreal, Canada, 1970.
  31. D. E. Knuth, The Art of Computer Programming, vol. 1, Addison-Wesley, Reading, Mass, USA, 1997.
  32. J. P. Lasalle, “The stability of dynamical systems,” in Proceedings of the Regional Conference Series in Applied Mathematics, SIAM, Philadelphia, Pa, USA, 1976.