About this Journal Submit a Manuscript Table of Contents
Discrete Dynamics in Nature and Society
Volume 2013 (2013), Article ID 732503, 6 pages
http://dx.doi.org/10.1155/2013/732503
Research Article

Synchronization of an Uncertain Fractional-Order Chaotic System via Backstepping Sliding Mode Control

1College of Information Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
2State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210093, China

Received 19 March 2013; Accepted 7 June 2013

Academic Editor: Sridhar Seshagiri

Copyright © 2013 Zhen Wang. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. I. Podlubny, Fractional Differential Equations, vol. 198, Academic Press, New York, NY, USA, 1999. View at Zentralblatt MATH · View at MathSciNet
  2. J. Wang and Y. Zhou, “Complete controllability of fractional evolution systems,” Communications in Nonlinear Science and Numerical Simulation, vol. 17, no. 11, pp. 4346–4355, 2012. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  3. Z. Wang, X. Huang, Y. Li, and X. Song, “A new image encryption algorithm based on the fractional-order hyperchaotic Lorenz system,” Chinese Physics B, vol. 22, no. 1, Article ID 010504, 2013. View at Publisher · View at Google Scholar
  4. R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific, Hackensack, NJ, USA, 2001. View at Publisher · View at Google Scholar · View at MathSciNet
  5. G. R. Chen, Controlling Chaos and Bifurcations in Engineering Systems, CRC Press, 1999.
  6. W. M. Ahmad and J. C. Sprott, “Chaos in fractional-order autonomous nonlinear systems,” Chaos, Solitons and Fractals, vol. 16, no. 2, pp. 339–351, 2003. View at Publisher · View at Google Scholar
  7. T. T. Hartley, C. F. Lorenzo, and H. K. Qammer, “Chaos in a fractional order Chua's system,” Transactions on Circuits and Systems, vol. 42, no. 8, pp. 485–490, 1995. View at Publisher · View at Google Scholar
  8. C. Li and G. Peng, “Chaos in Chen's system with a fractional order,” Chaos, Solitons & Fractals, vol. 22, no. 2, pp. 443–450, 2004. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  9. Y. Yu, H.-X. Li, S. Wang, and J. Yu, “Dynamic analysis of a fractional-order Lorenz chaotic system,” Chaos, Solitons and Fractals, vol. 42, no. 2, pp. 1181–1189, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  10. C. Li and G. Chen, “Chaos and hyperchaos in the fractional-order Rössler equations,” Physica A, vol. 341, no. 1–4, pp. 55–61, 2004. View at Publisher · View at Google Scholar · View at MathSciNet
  11. V. Daftardar-Gejji and S. Bhalekar, “Chaos in fractional ordered Liu system,” Computers & Mathematics with Applications, vol. 59, no. 3, pp. 1117–1127, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  12. J. Lu and J. Cao, “Adaptive complete synchronization of two identical or different chaotic (hyperchaotic) systems with fully unknown parameters,” Chaos, vol. 15, no. 4, 2005. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  13. J. Cao and J. Lu, “Adaptive synchronization of neural networks with or without time-varying delay,” Chaos, vol. 16, no. 1, 2006. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  14. J. Lu, J. Cao, and D. W. C. Ho, “Adaptive stabilization and synchronization for chaotic Lur'e systems with time-varying delay,” IEEE Transactions on Circuits and Systems, vol. 55, no. 5, pp. 1347–1356, 2008. View at Publisher · View at Google Scholar · View at MathSciNet
  15. W. Deng and C. Li, “Chaos synchronization of the fractional order Lü system,” Physica A, vol. 353, pp. 61–72, 2005. View at Publisher · View at Google Scholar
  16. M. R. Faieghi and H. Delavari, “Chaos in fractional-order Genesio-Tesi system and its synchronization,” Communications in Nonlinear Science and Numerical Simulation, vol. 17, no. 2, pp. 731–741, 2012. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  17. M. S. Tavazoei and M. Haeri, “Synchronization of chaotic fractional-order systems via active sliding mode controller,” Physica A, vol. 387, no. 1, pp. 57–70, 2008. View at Publisher · View at Google Scholar
  18. T. C. Lin and T. Y. Lee, “Chaos synchronization of uncertain fractional-order chaotic systems with time delay based on adaptive fuzzy sliding mode control,” IEEE Transactions on Fuzzy Systems, vol. 4, pp. 623–635, 2011.
  19. T. C. Lin and C. H. Kuo, “H synchronization of uncertain fractional order chaotic systems: adaptive fuzzy approach,” ISA Transactions, vol. 50, no. 4, pp. 548–556, 2011. View at Publisher · View at Google Scholar
  20. L. Song, J. Yang, and S. Xu, “Chaos synchronization for a class of nonlinear oscillators with fractional order,” Nonlinear Analysis. Theory, Methods & Applications, vol. 72, no. 5, pp. 2326–2336, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  21. X. Y. Wang and J. M. Song, “Synchronization of the fractional order hyperchaos Lorenz systems with activation feedback control,” Communications in Nonlinear Science and Numerical Simulation, vol. 14, no. 8, pp. 3351–3357, 2009. View at Publisher · View at Google Scholar
  22. J. W. Wang and Y. B. Zhang, “Synchronization in coupled nonidentical incommensurate fractional order systems,” Physics Letters A, vol. 374, no. 25, pp. 202–207, 2009. View at Publisher · View at Google Scholar
  23. X. Wu, H. Lu, and S. Shen, “Synchronization of a new fractional-order hyperchaotic system,” Physics Letters A, vol. 373, no. 27-28, pp. 2329–2337, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  24. K. Zhang, H. Wang, and H. Fang, “Feedback control and hybrid projective synchronization of a fractional-order Newton-Leipnik system,” Communications in Nonlinear Science and Numerical Simulation, vol. 17, no. 1, pp. 317–328, 2012. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  25. P. Zhou and W. Zhu, “Function projective synchronization for fractional-order chaotic systems,” Nonlinear Analysis, vol. 12, no. 2, pp. 811–816, 2011. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  26. S. Wang, Y. G. Yu, and M. Diao, “Hybrid projective synchronization of chaotic fractional order systems with different dimensions,” Physica A, vol. 389, no. 21, pp. 4981–4988, 2010. View at Publisher · View at Google Scholar
  27. M. Krstic, I. Kanellakopoulos, and P. V. Kokotovic, Nonlinear and Adaptive Control Design, Wiley, New York, NY, USA, 1995.
  28. Z. Zhang, S. Xu, and H. Shen, “Reduced-order observer-based output-feedback tracking control of nonlinear systems with state delay and disturbance,” International Journal of Robust and Nonlinear Control, vol. 20, no. 15, pp. 1723–1738, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  29. Z. Zhang, S. Xu, and B. Wang, “Adaptive actuator failure compensation with unknown control gain signs,” IET Control Theory & Applications, vol. 5, no. 16, pp. 1859–1867, 2011. View at Publisher · View at Google Scholar · View at MathSciNet
  30. H. N. Pishkenari, N. Jalili, S. H. Mahboobi, A. Alasty, and A. Meghdari, “Robust adaptive backstepping control of uncertain Lorenz system,” Chaos, vol. 20, no. 2, Article ID 023105, 5 pages, 2010. View at Publisher · View at Google Scholar
  31. H. Shi, “A novel scheme for the design of backstepping control for a class of nonlinear systems,” Applied Mathematical Modelling. Simulation and Computation for Engineering and Environmental Systems, vol. 35, no. 4, pp. 1893–1903, 2011. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  32. Y. Li, Y. Chen, and I. Podlubny, “Mittag-Leffler stability of fractional order nonlinear dynamic systems,” Automatica, vol. 45, no. 8, pp. 1965–1969, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  33. K. Diethelm, N. J. Ford, and A. D. Freed, “A predictor-corrector approach for the numerical solution of fractional differential equations,” Nonlinear Dynamics, vol. 29, no. 1–4, pp. 3–22, 2002, Fractional order calculus and its applications. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet