About this Journal Submit a Manuscript Table of Contents
Discrete Dynamics in Nature and Society
Volume 2013 (2013), Article ID 748529, 12 pages
http://dx.doi.org/10.1155/2013/748529
Research Article

Formation and Propagation of Local Traffic Jam

1College of Civil Engineering Architecture, Zhejiang University, 866, Yuhngtang Road, Hangzhou City, Zhejiang Province 310058, China
2Department of Civil Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan

Received 14 November 2012; Accepted 22 January 2013

Academic Editor: Cengiz Çinar

Copyright © 2013 Hong-sheng Qi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. Wright and P. Roberg, “The conceptual structure of traffic jams,” Transport Policy, vol. 5, no. 1, pp. 23–35, 1998. View at Publisher · View at Google Scholar · View at Scopus
  2. M. Schreckenberg, L. Neubert, and J. Wahle, “Simulation of traffic in large road networks,” Future Generation Computer Systems, vol. 17, no. 5, pp. 649–657, 2001. View at Publisher · View at Google Scholar · View at Scopus
  3. M. Treiber, A. Hennecke, and D. Helbing, “Congested traffic states in empirical observations and microscopic simulations,” Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, vol. 62, no. 2 B, pp. 1805–1824, 2000. View at Scopus
  4. N. J. Linesch and R. M. D'Souza, “Periodic states, local effects and coexistence in the BML traffic jam model,” Physica A: Statistical Mechanics and its Applications, vol. 387, no. 24, pp. 6170–6176, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. T. Nagatani, “The physics of traffic jams,” Reports on Progress in Physics, vol. 65, no. 9, pp. 1331–1386, 2002. View at Publisher · View at Google Scholar · View at Scopus
  6. C. F. Daganzo, “The cell transmission model: A dynamic representation of highway traffic consistent with the hydrodynamic theory,” Transportation Research Part B, vol. 28, no. 4, pp. 269–287, 1994. View at Scopus
  7. C. F. Daganzo, “The cell transmission model, part II: Network traffic,” Transportation Research Part B, vol. 29, no. 2, pp. 79–93, 1995. View at Scopus
  8. M. J. Lighthill and G. B. Whitham, “On kinematic waves. II. A theory of traffic flow on long crowded roads,” Proceedings of the Royal Society. London. Series A. Mathematical, Physical and Engineering Sciences, vol. 229, pp. 317–345, 1955. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  9. P. I. Richards, “Shock waves on the highway,” Operations Research, vol. 4, pp. 42–51, 1956. View at Publisher · View at Google Scholar · View at MathSciNet
  10. J. Long, Z. Gao, X. Zhao, A. Lian, and P. Orenstein, “Urban traffic jam simulation based on the cell transmission model,” Networks and Spatial Economics, vol. 11, no. 1, pp. 43–64, 2011. View at Publisher · View at Google Scholar · View at MathSciNet
  11. P. Roberg and C. R. Abbess, “Diagnosis and treatment of congestion in central urban areas,” European Journal of Operational Research, vol. 104, no. 1, pp. 218–230, 1998. View at Scopus
  12. P. G. Michalopoulos, D. E. Beskos, and J.-K. Lin, “Analysis of interrupted traffic flow by finite difference methods,” Transportation Research. Part B. Methodological. An International Journal, vol. 18, no. 4-5, pp. 409–421, 1984. View at Publisher · View at Google Scholar · View at MathSciNet
  13. A. Skabardonis and N. Geroliminis, “Real-time estimation of travel times along signalized arterials,” in Proceedings of the 16th International Symposium on Transportation and Traffic Theory, 2005.
  14. A. Skabardonis and N. Geroliminis, “Real-time monitoring and control on signalized arterials,” Journal of Intelligent Transportation Systems: Technology, Planning, and Operations, vol. 12, no. 2, pp. 64–74, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. C. F. Daganzo, “Urban gridlock: Macroscopic modeling and mitigation approaches,” Transportation Research Part B: Methodological, vol. 41, no. 1, pp. 49–62, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. X. Wu, H. X. Liu, and D. Gettman, “Identification of oversaturated intersections using high-resolution traffic signal data,” Transportation Research Part C: Emerging Technologies, vol. 18, no. 4, pp. 626–638, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. N. . Geroliminis and A. Skabardonis, “Queue spillovers in city street networks with signal-controlled intersections,” in Proceedings of the 89th Annual Meeting of the Transportation Research Board, Washington, DC, USA, 2010.
  18. Y. Sheffi, Urban Transportation Networks: Equilibrium Analysis with Mathematical Programming Methods, Prentice-Hall, Englewood Cliffs, NJ, USA, 1985.