About this Journal Submit a Manuscript Table of Contents
Discrete Dynamics in Nature and Society
Volume 2013 (2013), Article ID 763564, 7 pages
http://dx.doi.org/10.1155/2013/763564
Research Article

Modified Function Projective Synchronization of Fractional Order Chaotic Systems with Different Dimensions

1Software College, Northeastern University, Shenyang 110819, China
2School of Information Science & Engineering, Northeastern University, Shenyang 110819, China

Received 23 February 2013; Revised 23 September 2013; Accepted 27 September 2013

Academic Editor: Daniele Fournier-Prunaret

Copyright © 2013 Hong-Juan Liu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. Blasius, A. Huppert, and L. Stone, “Complex dynamics and phase synchronization in spatially extended ecological system,” Nature, vol. 399, pp. 354–359, 1999.
  2. M. Lakshmanan and K. Murali, Chaos in Nonlinear Oscillators: Controlling and Synchronization, World Scientific, Singapore, 1996. View at Publisher · View at Google Scholar · View at MathSciNet
  3. S. K. Han, C. Kerrer, and Y. Kuramoto, “Dephasing and bursting in coupled neural oscillators,” Physical Review Letters, vol. 75, pp. 3190–3193, 1995.
  4. K. M. Cuomo and A. V. Oppenheim, “Circuit implementation of synchronized chaos with application to communication,” Physical Review Letters, vol. 71, pp. 65–68, 1993.
  5. L. M. Pecora and T. L. Carroll, “Synchronization in chaotic systems,” Physical Review Letters, vol. 64, no. 8, pp. 821–824, 1990. View at Publisher · View at Google Scholar · View at MathSciNet
  6. C. W. Wu and L. O. Chua, “A unified framework for synchronization and control of dynamical systems,” International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, vol. 4, no. 4, pp. 979–998, 1994. View at Publisher · View at Google Scholar · View at MathSciNet
  7. M. G. Rosenblum, A. S. Pikovsky, and J. Kurths, “Phase synchronization of chaotic oscillators,” Physics Review Letters, vol. 76, pp. 1804–1807, 1996.
  8. S. Taherionl and Y. C. Lai, “Observability of lag synchronization of coupled chaotic oscillators,” Physical Review E, vol. 59, pp. 6247–6250, 1999.
  9. Z. Y. Yan, “Q-S (lag or anticipated) synchronization backstepping scheme in a class of continuous-time hyperchaotic systems—a symbolic-numeric computation approach,” Chaos, vol. 15, no. 2, Article ID 023902, 9 pages, 2005. View at Publisher · View at Google Scholar · View at MathSciNet
  10. R. Mainieri and J. Rehacek, “Projective synchronization in three-dimensional chaotic systems,” Physics Review Letters, vol. 82, pp. 3042–3045, 1999.
  11. K. S. Sudheer and M. Sabir, “Adaptive modified function projective synchronization between hyperchaotic Lorenz system and hyperchaotic Lu system with uncertain parameters,” Physics Letters A, vol. 373, no. 41, pp. 3743–3748, 2009. View at Publisher · View at Google Scholar · View at MathSciNet
  12. K. S. Sudheer and M. Sabir, “Switched modified function projective synchronization of hyperchaotic Qi system with uncertain parameters,” Communications in Nonlinear Science and Numerical Simulation, vol. 15, pp. 4058–4064, 2010.
  13. J. R. Chen, L. C. Jiao, J. S. Wu, et al., “Projective synchronization with different scale factors in a driven-response complex network and its application in image encryption,” Nonlinear Analysis: Real World Applications, vol. 11, pp. 3045–3058, 2010.
  14. T. T. Hartley, C. F. Lorenzo, and H. K. Qammer, “Chaos in a fractional order Chua's system,” IEEE Transactions on Circuits and Systems I, vol. 42, pp. 485–490, 1995.
  15. J. G. Lu, “Chaotic dynamics and synchronization of fractional-order Arneodo's systems,” Chaos Solitons & Fractals, vol. 26, pp. 1125–1133, 2005.
  16. C. Li and G. Peng, “Chaos in Chen's system with a fractional order,” Chaos, Solitons & Fractals, vol. 22, no. 2, pp. 443–450, 2004. View at Publisher · View at Google Scholar · View at MathSciNet
  17. X. Y. Wang and J. M. Song, “Synchronization of the fractional order hyperchaos Lorenz systems with activation feedback control,” Communications in Nonlinear Science and Numerical Simulation, vol. 14, pp. 3351–3357, 2009.
  18. F. H. Min, Y. Yu, and C. J. Ge, “Circuit implementation and tracking control of the fractional-order hyper-chaotic Lü system,” Acta Physica Sinica, vol. 58, no. 3, pp. 1456–1461, 2009.
  19. M. S. Tavazoei, M. Haeri, and N. Nazari., “Analysis of undamped oscillations generated by marginally stable fractional order systems,” Signal Processing, vol. 88, pp. 2971–2978, 2008.
  20. S. K. Agrawal, M. Srivastava, and S. Das, “Synchronization of fractional order chaotic systems using active control method,” Chaos, Solitons & Fractals, vol. 45, pp. 737–752, 2012.
  21. R. X. Zhang and S. P. Yang, “Adaptive synchronization of fractional-order chaotic systems via a single driving variable,” Nonlinear Dynamics, vol. 66, no. 4, pp. 831–837, 2011. View at Publisher · View at Google Scholar · View at MathSciNet
  22. J. G. Lu, “Nonlinear observer design to synchronize fractional-order chaotic system via a scaler transmitted signal,” Physica A, vol. 359, pp. 107–118, 2006.
  23. D.-Y. Chen, Y.-X. Liu, X.-Y. Ma, and R.-F. Zhang, “Control of a class of fractional-order chaotic systems via sliding mode,” Nonlinear Dynamics, vol. 67, no. 1, pp. 893–901, 2012. View at Publisher · View at Google Scholar · View at MathSciNet
  24. P. Zhou and R. Ding, “Chaotic synchronization between different fractional-order chaotic systems,” Journal of the Franklin Institute, vol. 348, no. 10, pp. 2839–2848, 2011. View at Publisher · View at Google Scholar · View at MathSciNet
  25. S. Y. Li and Z. M. Ge, “Generalized synchronization of chaotic systems with different orders by fuzzy logic constant controller,” Expert Systems with Applications, vol. 38, pp. 2302–2310, 2011.
  26. R. Femat and J. Alvarez-Ramírez, “Synchronization of a class of strictly different chaotic oscillators,” Physics Letters A, vol. 236, no. 4, pp. 307–313, 1997. View at Publisher · View at Google Scholar · View at MathSciNet
  27. D. Terman, N. Kopell, and A. Bose, “Dynamics of two mutually coupled slow inhibitory neurons,” Physica D, vol. 117, no. 1–4, pp. 241–275, 1998. View at Publisher · View at Google Scholar · View at MathSciNet
  28. S. Wang, Y. G. Yu, and M. Diao, “Hybrid projective synchronization of chaotic fractional order systems with different dimensions,” Physica A, vol. 389, pp. 4981–4988, 2010.
  29. S. Wang and Y. G. Yu, “Generalized projective synchronization of fractional order chaotic systems with different dimensions,” Chinese Physics Letters, vol. 29, no. 2, Article ID 020505, 2012.
  30. D. Matignon, “Stability results of fractional differential equation with applications to control processing,” in Computational Engineering in Systems Applications, pp. 963–968, 1996.
  31. K. Diethelm, N. J. Ford, and A. D. Freed, “A predictor-corrector approach for the numerical solution of fractional differential equations,” Nonlinear Dynamics, vol. 29, no. 1–4, pp. 3–22, 2002. View at Publisher · View at Google Scholar · View at MathSciNet