About this Journal Submit a Manuscript Table of Contents
Discrete Dynamics in Nature and Society
Volume 2013 (2013), Article ID 781407, 9 pages
http://dx.doi.org/10.1155/2013/781407
Research Article

Global Dynamics of Virus Infection Model with Antibody Immune Response and Distributed Delays

1Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
2Department of Mathematics, Faculty of Science, Al-Azhar University, Assiut, Egypt
3Department of Mathematics, Faculty of Arts and Science, Qassim University, Buraidah 71511, Saudi Arabia

Received 8 August 2013; Accepted 7 October 2013

Academic Editor: Victor S. Kozyakin

Copyright © 2013 A. M. Elaiw et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. A. Nowak and R. M. May, Virus Dynamicss: Mathematical Principles of Immunology and Virology, Oxford University Press, Oxford, UK, 2000. View at MathSciNet
  2. A. S. Perelson and P. W. Nelson, “Mathematical analysis of HIV-1 dynamics in vivo,” SIAM Review, vol. 41, no. 1, pp. 3–44, 1999. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  3. D. S. Callaway and A. S. Perelson, “HIV-1 infection and low steady state viral loads,” Bulletin of Mathematical Biology, vol. 64, no. 1, pp. 29–64, 2002. View at Publisher · View at Google Scholar · View at Scopus
  4. P. K. Roy, A. N. Chatterjee, D. Greenhalgh, and Q. J. A. Khan, “Long term dynamics in a mathematical model of HIV-1 infection with delay in different variants of the basic drug therapy model,” Nonlinear Analysis: Real World Applications, vol. 14, no. 3, pp. 1621–1633, 2013. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  5. P. W. Nelson, J. D. Murray, and A. S. Perelson, “A model of HIV-1 pathogenesis that includes an intracellular delay,” Mathematical Biosciences, vol. 163, no. 2, pp. 201–215, 2000. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  6. P. W. Nelson and A. S. Perelson, “Mathematical analysis of delay differential equation models of HIV-1 infection,” Mathematical Biosciences, vol. 179, no. 1, pp. 73–94, 2002. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  7. R. V. Culshaw and S. Ruan, “A delay-differential equation model of HIV infection of CD4+ T-cells,” Mathematical Biosciences, vol. 165, no. 1, pp. 27–39, 2000. View at Publisher · View at Google Scholar · View at Scopus
  8. J. E. Mittler, B. Sulzer, A. U. Neumann, and A. S. Perelson, “Influence of delayed viral production on viral dynamics in HIV-1 infected patients,” Mathematical Biosciences, vol. 152, no. 2, pp. 143–163, 1998. View at Publisher · View at Google Scholar · View at Scopus
  9. A. M. Elaiw and A. S. Alsheri, “Global Dynamics of HIV Infection of CD4+ T Cells and Macrophages,” Discrete Dynamics in Nature and Society, vol. 2013, Article ID 264759, 8 pages, 2013. View at Publisher · View at Google Scholar
  10. A. M. Elaiw and S. A. Azoz, “Global properties of a class of HIV infection models with Beddington-DeAngelis functional response,” Mathematical Methods in the Applied Sciences, vol. 36, no. 4, pp. 383–394, 2013. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  11. A. Elaiw, I. Hassanien, and S. Azoz, “Global stability of HIV infection models with intracellular delays,” Journal of the Korean Mathematical Society, vol. 49, no. 4, pp. 779–794, 2012. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  12. A. M. Elaiw and M. A. Alghamdi, “Global properties of virus dynamics models with multitarget cells and discrete-time delays,” Discrete Dynamics in Nature and Society, vol. 2011, Article ID 201274, 19 pages, 2011. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  13. A. M. Elaiw, “Global properties of a class of virus infection models with multitarget cells,” Nonlinear Dynamics, vol. 69, no. 1-2, pp. 423–435, 2012. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  14. A. M. Elaiw, “Global dynamics of an HIV infection model with two classes of target cells and distributed delays,” Discrete Dynamics in Nature and Society, vol. 2012, Article ID 253703, 13 pages, 2012. View at Zentralblatt MATH · View at MathSciNet
  15. M. A. Nowak and C. R. M. Bangham, “Population dynamics of immune responses to persistent viruses,” Science, vol. 272, no. 5258, pp. 74–79, 1996. View at Scopus
  16. K. Wang, A. Fan, and A. Torres, “Global properties of an improved hepatitis B virus model,” Nonlinear Analysis: Real World Applications, vol. 11, no. 4, pp. 3131–3138, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  17. S. Zeuzem, J. M. Schmidt, J.-H. Lee, B. Rüster, and W. K. Roth, “Effect of interferon alfa on the dynamics of hepatitis C virus turnover in vivo,” Hepatology, vol. 23, no. 2, pp. 366–371, 1996. View at Publisher · View at Google Scholar · View at Scopus
  18. A. U. Neumann, N. P. Lam, H. Dahari et al., “Hepatitis C viral dynamics in vivo and the antiviral efficacy of interferon-α therapy,” Science, vol. 282, no. 5386, pp. 103–107, 1998. View at Publisher · View at Google Scholar · View at Scopus
  19. J. A. Deans and S. Cohen, “Immunology of malaria,” Annual Review of Microbiology, vol. 37, pp. 25–49, 1983. View at Scopus
  20. R. M. Anderson, R. M. May, and S. Gupta, “Non-linear phenomena in host-parasite interactions,” Parasitology, vol. 99, pp. S59–S79, 1989. View at Scopus
  21. A. Murase, T. Sasaki, and T. Kajiwara, “Stability analysis of pathogen-immune interaction dynamics,” Journal of Mathematical Biology, vol. 51, no. 3, pp. 247–267, 2005. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  22. D. Wodarz, R. M. May, and M. A. Nowak, “The role of antigen-independent persistence of memory cytotoxic T lymphocytes,” International Immunology, vol. 12, no. 4, pp. 467–477, 2000. View at Scopus
  23. C. Chiyaka, W. Garira, and S. Dube, “Modelling immune response and drug therapy in human malaria infection,” Computational and Mathematical Methods in Medicine, vol. 9, no. 2, pp. 143–163, 2008. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  24. A. S. Perelson, “Modelling viral and immune system dynamics,” Nature Reviews Immunology, vol. 2, no. 1, pp. 28–36, 2002. View at Scopus
  25. S. Wang and D. Zou, “Global stability of in-host viral models with humoral immunity and intracellular delays,” Applied Mathematical Modelling, vol. 36, no. 3, pp. 1313–1322, 2012. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  26. H. F. Huo, Y. L. Tang, and L. X. Feng, “A virus dynamics model with saturation infection and humoral immunity,” International Journal of Mathematical Analysis, vol. 6, no. 40, pp. 1977–1983, 2012.
  27. N. M. Dixit and A. S. Perelson, “Complex patterns of viral load decay under antiretroviral therapy: influence of pharmacokinetics and intracellular delay,” Journal of Theoretical Biology, vol. 226, no. 1, pp. 95–109, 2004. View at Publisher · View at Google Scholar · View at MathSciNet
  28. X. Wang and S. Liu, “A class of delayed viral models with saturation infection rate and immune response,” Mathematical Methods in the Applied Sciences, vol. 36, no. 2, pp. 125–142, 2013. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  29. A. Korobeinikov, “Global properties of infectious disease models with nonlinear incidence,” Bulletin of Mathematical Biology, vol. 69, no. 6, pp. 1871–1886, 2007. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  30. G. Huang, Y. Takeuchi, and W. Ma, “Lyapunov functionals for delay differential equations model of viral infections,” SIAM Journal on Applied Mathematics, vol. 70, no. 7, pp. 2693–2708, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  31. X. Song and A. U. Neumann, “Global stability and periodic solution of the viral dynamics,” Journal of Mathematical Analysis and Applications, vol. 329, no. 1, pp. 281–297, 2007. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  32. C. C. McCluskey, “Complete global stability for an SIR epidemic model with delay—distributed or discrete,” Nonlinear Analysis: Real World Applications, vol. 11, no. 1, pp. 55–59, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  33. J. K. Hale and S. M. Verduyn Lunel, Introduction to Functional-Differential Equations, vol. 99, Springer, New York, NY, USA, 1993. View at MathSciNet