About this Journal Submit a Manuscript Table of Contents
Discrete Dynamics in Nature and Society
Volume 2013 (2013), Article ID 812562, 7 pages
http://dx.doi.org/10.1155/2013/812562
Research Article

Effect Analysis of Intermittent Release Measures in Heavy Fog Weather with an Improved CA Model

Institute of Transportation Engineering, Tsinghua University, Beijing 100084, China

Received 3 August 2013; Accepted 10 October 2013

Academic Editor: Tetsuji Tokihiro

Copyright © 2013 Jing Shi and Jinhua Tan. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. O. Brooks, M. C. Crisler, N. Klein et al., “Speed choice and driving performance in simulated foggy conditions,” Accident Analysis and Prevention, vol. 43, no. 3, pp. 698–705, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. C. X. Zou, The distribution characteristics and risk assessment of fog disaster in Huning Highway [M.S. thesis], Nanjing University of Information Science & Technology, Nanjing, China, 2011.
  3. Ministry of Public Security of the People's Republic of China, Announcement of the Freeway Traffic Management in Low Visibility Weather Conditions, Ministry of Public Security of the People's Republic of China, Beijing, China, 1997.
  4. K. L. M. Broughton, F. Switzer, and D. Scott, “Car following decisions under three visibility conditions and two speeds tested with a driving simulator,” Accident Analysis and Prevention, vol. 39, no. 1, pp. 106–116, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. S. Caro, V. Cavallo, C. Marendaz, E. R. Boer, and F. Vienne, “Can headway reduction in fog be explained by impaired perception of relative motion?” Human Factors, vol. 51, no. 3, pp. 378–392, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. A. S. Mueller and L. M. Trick, “Driving in fog: the effects of driving experience and visibility on speed compensation and hazard avoidance,” Accident Analysis and Prevention, vol. 48, pp. 472–479, 2012. View at Publisher · View at Google Scholar · View at Scopus
  7. J. Y. Duan, Driver's risk illusions in car following and unconcious imitation behavior [Ph.D. thesis], Tsinghua University, Beijing, China, 2012.
  8. M. Cremer and J. Ludwig, “A fast simulation model for traffic flow on the basis of boolean operations,” Mathematics and Computers in Simulation, vol. 28, no. 4, pp. 297–303, 1986. View at Publisher · View at Google Scholar · View at Scopus
  9. K. Nagel and M. Schreckenberg, “A cellular automaton model for freeway traffic,” Journal De Physique I, vol. 2, no. 12, pp. 2221–2229, 1992.
  10. M. Fukui and Y. Ishibashi, “Traffic Flow in 1D Cellular Automaton Model Including Cars Moving with High Speed,” Journal of the Physical Society of Japan, vol. 65, no. 6, pp. 1868–1870, 1996. View at Publisher · View at Google Scholar · View at Scopus
  11. W. Knospe, L. Santen, A. Schadschneider, and M. Schreckenberg, “Towards a realistic microscopic description of highway traffic,” Journal of Physics A, vol. 33, no. 48, pp. L477–L485, 2000. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  12. N. Boccara, H. Fukś, and Q. Zeng, “Car accidents and number of stopped cars due to road blockage on a one-lane highway,” Journal of Physics A, vol. 30, no. 10, pp. 3329–3332, 1997. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  13. N. Moussa, “Car accidents in cellular automata models for one-lane traffic flow,” Physical Review E, vol. 68, no. 3, Article ID 036127, pp. 361271–361278, 2003. View at Scopus
  14. R. Jiang, X. Wang, and Q. Wu, “Dangerous situations within the framework of the Nagel-Schreckenberg model,” Journal of Physics A, vol. 36, no. 17, pp. 4763–4769, 2003. View at Publisher · View at Google Scholar · View at Scopus
  15. M. E. Lárraga, J. A. del Río, and L. Alvarez-lcaza, “Cellular automata for one-lane traffic flow modeling,” Transportation Research C, vol. 13, no. 1, pp. 63–74, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. K. F. Wu, L. J. Kong, and M. R. Liu, “The study of a cellular automaton NS and WWH mixed model for traffic flow on a two-lane roadway,” Acta Physica Sinica, vol. 55, no. 12, pp. 6275–6280, 2006. View at Scopus
  17. L. J. Peng and R. Kang, “One-dimensional cellular automaton model of traffic flow considering drivers' features,” Acta Physica Sinica, vol. 58, no. 2, pp. 830–835, 2009. View at Scopus
  18. J. X. Ding, H. J. Huang, and Q. Tian, “A traffic flow cellular automaton model to considering drivers' learning and forgetting behaviour,” Chinese Physics B, vol. 20, no. 2, Article ID 028901, pp. 1–11, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. H. D. He, W. Z. Lu, and L. Y. Dong, “An improved cellular automaton model considering the effect of traffic lights and driving behaviour,” Chinese Physics B, vol. 20, no. 4, Article ID 040514, pp. 1–7, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. Transportation Research Board, Highway Capacity Manual Fifth Edition (HCM, 2010), Transportation Research Board, Washington, DC, USA, 2010.
  21. L. Tao, Research on drivers' aberrant driving behavior styles and their discriminant indices [M.S. thesis], Tsinghua University, Beijing, China, 2012.