About this Journal Submit a Manuscript Table of Contents
Discrete Dynamics in Nature and Society
Volume 2013 (2013), Article ID 941238, 9 pages
http://dx.doi.org/10.1155/2013/941238
Research Article

Dynamic Congested Traffic States of Density Difference Lattice Hydrodynamic Model with On-Ramp

MOE Key Laboratory for Urban Transportation Complex Systems Theory and Technology, Beijing Jiaotong University, Beijing 100044, China

Received 1 June 2013; Revised 21 August 2013; Accepted 23 August 2013

Academic Editor: Tetsuji Tokihiro

Copyright © 2013 Jun-fang Tian et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. Helbing, “Traffic and related self-driven many-particle systems,” Reviews of Modern Physics, vol. 73, no. 4, pp. 1067–1141, 2001. View at Publisher · View at Google Scholar · View at Scopus
  2. T. Nagatani, “The physics of traffic jams,” Reports on Progress in Physics, vol. 65, no. 9, p. 1331, 2002. View at Publisher · View at Google Scholar · View at Scopus
  3. K. Nagel, P. Wagner, and R. Woesler, “Still flowing: approaches to traffic flow and traffic jam modeling,” Operations Research, vol. 51, no. 5, pp. 681–710, 2003. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  4. B. S. Kerner, The Physics of Traffic: Empirical Freeway Pattern Features, Engineering Applications, and Theory, Springer, 2004.
  5. B. Jia, Z. Y. Gao, K. P. Li, and X. G. Li, Models and Simulations of Traffic System Based on the Theory of Cellular Automaton, Science Press, Beijing, China, 2007.
  6. B. S. Kerner, Introduction to Modern Traffic Flow Theory and Control: The Long Road to Three-Phase Traffic Theory, Springer, 2009.
  7. M. Treiber and A. Kesting, Traffic Flow Dynamics: Data, Models and Simulation, Springer, Heidelberg, Germany, 2013. View at Publisher · View at Google Scholar · View at MathSciNet
  8. K. Nagel and M. Schreckenberg, “A cellular automaton model for freeway traffic,” Journal de Physique I, vol. 2, no. 12, pp. 2221–2229, 1992. View at Publisher · View at Google Scholar
  9. M. Bando, K. Hasebe, A. Nakayama, A. Shibata, and Y. Sugiyama, “Dynamical model of traffic congestion and numerical simulation,” Physical Review E, vol. 51, no. 2, pp. 1035–1042, 1995. View at Publisher · View at Google Scholar · View at Scopus
  10. R. Jiang, Q. Wu, and Z. Zhu, “Full velocity difference model for a car-following theory,” Physical Review E, vol. 64, no. 1, Article ID 017101, 2001. View at Scopus
  11. M. Treiber, A. Hennecke, and D. Helbing, “Congested traffic states in empirical observations and microscopic simulations,” Physical Review E, vol. 62, no. 2, pp. 1805–1824, 2000. View at Publisher · View at Google Scholar · View at Scopus
  12. D. Helbing, A. Hennecke, V. Shvetsov, and M. Treiber, “MASTER: macroscopic traffic simulation based on a gas-kinetic, non-local traffic model,” Transportation Research B, vol. 35, no. 2, pp. 183–211, 2001. View at Publisher · View at Google Scholar · View at Scopus
  13. R. Jiang, Q.-S. Wu, and Z.-J. Zhu, “A new continuum model for traffic flow and numerical tests,” Transportation Research B, vol. 36, no. 5, pp. 405–419, 2002. View at Publisher · View at Google Scholar · View at Scopus
  14. T.-Q. Tang, H.-J. Huang, and Z.-Y. Gao, “Stability of the car-following model on two lanes,” Physical Review E, vol. 72, no. 6, Article ID 066124, 7 pages, 2005. View at Publisher · View at Google Scholar
  15. T. Nagatani, “Modified KdV equation for jamming transition in the continuum models of traffic,” Physica A, vol. 261, no. 3-4, pp. 599–607, 1998. View at Publisher · View at Google Scholar · View at MathSciNet
  16. T. Nagatani, “TDGL and MKdV equations for jamming transition in the lattice models of traffic,” Physica A, vol. 264, no. 3-4, pp. 581–592, 1999. View at Publisher · View at Google Scholar · View at Scopus
  17. H. X. Ge, S. Q. Dai, Y. Xue, and L. Y. Dong, “Stabilization analysis and modified Korteweg-de Vries equation in a cooperative driving system,” Physical Review E, vol. 71, no. 6, Article ID 066119, 7 pages, 2005. View at Publisher · View at Google Scholar · View at MathSciNet
  18. H. X. Ge and R.-J. Cheng, “The “backward looking” effect in the lattice hydrodynamic model,” Physica A, vol. 387, no. 28, pp. 6952–6958, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. H. X. Ge, R. J. Cheng, and L. Lei, “The theoretical analysis of the lattice hydrodynamic models for traffic flow theory,” Physica A, vol. 389, no. 14, pp. 2825–2834, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. Y. Xue, “Lattice models of the optimal traffic current,” Acta Physica Sinica, vol. 53, no. 1, pp. 25–30, 2004.
  21. T.-Q. Tang, H.-J. Huang, and Y. Xue, “An improved two-lane traffic flow lattice model,” Acta Physica Sinica, vol. 55, no. 8, pp. 4026–4031, 2006. View at Scopus
  22. W.-X. Zhu and E.-X. Chi, “Analysis of generalized optimal current lattice model for traffic flow,” International Journal of Modern Physics C, vol. 19, no. 5, pp. 727–739, 2008. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  23. J.-F. Tian, B. Jia, X.-G. Li, and Z.-Y. Gao, “Flow difference effect in the lattice hydrodynamic model,” Chinese Physics B, vol. 19, no. 4, Article ID 040303, 2010. View at Publisher · View at Google Scholar
  24. G. H. Peng, X. H. Cai, B. F. Cao, and C. Q. Liu, “Non-lane-based lattice hydrodynamic model of traffic flow considering the lateral effects of the lane width,” Physics Letters A, vol. 375, no. 30-31, pp. 2823–2827, 2011. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  25. G. H. Peng, X. H. Cai, C. Q. Liu, and B. F. Cao, “A new lattice model of traffic flow with the consideration of the driver's forecast effects,” Physics Letters A, vol. 375, no. 22, pp. 2153–2157, 2011. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  26. T. Wang, Z.-Y. Gao, X.-M. Zhao, J.-F. Tian, and W.-Y. Zhang, “Flow difference effect in the two-lane lattice hydrodynamic model,” Chinese Physics B, vol. 21, no. 7, Article ID 070507, 2012. View at Publisher · View at Google Scholar
  27. W.-X. Zhu and L.-D. Zhang, “A novel lattice traffic flow model and its solitary density waves,” International Journal of Modern Physics C, vol. 23, no. 3, Article ID 1250025, 2012. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  28. J.-F. Tian, Z. Yuan, B. Jia, M.-H. Li, and G.-J. Jiang, “The stabilization effect of the density difference in the modified lattice hydrodynamic model of traffic flow,” Physica A, vol. 391, no. 19, pp. 4476–4482, 2012. View at Publisher · View at Google Scholar
  29. J.-F. Tian, Z.-Z. Yuan, B. Jia, and H.-Q. Fan, “Phase transitions and the Korteweg-de Vries equation in the density difference lattice hydrodynamic model of traffic flow,” International Journal of Modern Physics C, vol. 24, no. 3, Article ID 1350016, 9 pages, 2013. View at Publisher · View at Google Scholar · View at MathSciNet
  30. D. Helbing and M. Treiber, “Gas-kinetic-based traffic model explaining observed hysteretic phase transition,” Physical Review Letters, vol. 81, no. 14, pp. 3042–3045, 1998. View at Publisher · View at Google Scholar · View at Scopus
  31. D. Helbing and M. Treiber, “Numerical simulation of macroscopic traffic equations,” Computing in Science and Engineering, vol. 1, no. 5, pp. 89–98, 1999. View at Publisher · View at Google Scholar · View at Scopus
  32. H. Y. Lee, H.-W. Lee, and D. Kim, “Dynamic states of a continuum traffic equation with on-ramp,” Physical Review E, vol. 59, no. 5, pp. 5101–5111, 1999. View at Scopus
  33. H. Y. Lee, H. W. Lee, and D. Kim, “Phase diagram of congested traffic flow: an empirical study,” Physical Review E, vol. 62, no. 4, pp. 4737–4741, 2000. View at Scopus
  34. D. Helbing, A. Hennecke, and M. Treiber, “Phase diagram of traffic states in the presence of inhomogeneities,” Physical Review Letters, vol. 82, no. 21, pp. 4360–4363, 1999. View at Publisher · View at Google Scholar
  35. M. Schonhof and D. Helbing, “Criticism of three-phase traffic theory,” Transportation Research B, vol. 43, no. 7, pp. 784–797, 2009. View at Publisher · View at Google Scholar
  36. M. Treiber, A. Kesting, and D. Helbing, “Three-phase traffic theory and two-phase models with a fundamental diagram in the light of empirical stylized facts,” Transportation Research B, vol. 44, no. 8-9, pp. 983–1000, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. C.-F. Tang, R. Jiang, and Q.-S. Wu, “Phase diagram of speed gradient model with an on-ramp,” Physica A, vol. 377, no. 2, pp. 641–650, 2007. View at Publisher · View at Google Scholar · View at Scopus