About this Journal Submit a Manuscript Table of Contents
Discrete Dynamics in Nature and Society
Volume 2014 (2014), Article ID 126261, 5 pages
http://dx.doi.org/10.1155/2014/126261
Research Article

Complex Network Analysis of Pakistan Railways

School of Business Administration, South China University of Technology, Guangzhou 510640, China

Received 14 December 2013; Accepted 16 February 2014; Published 18 March 2014

Academic Editor: Beatrice Paternoster

Copyright © 2014 Yasir Tariq Mohmand and Aihu Wang. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. W. Li and X. Cai, “Statistical analysis of airport network of China,” Physical Review E, vol. 69, no. 4, Article ID 046106, 2004. View at Scopus
  2. H.-K. Liu and T. Zhou, “Empirical study of Chinese city airline network,” Acta Physica Sinica, vol. 56, no. 1, pp. 106–112, 2007. View at Scopus
  3. G. Bagler, “Analysis of the airport network of India as a complex weighted network,” Physica A, vol. 387, no. 12, pp. 2972–2980, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. L.-P. Chi, R. Wang, H. Su et al., “Structural properties of US flight network,” Chinese Physics Letters, vol. 20, no. 8, pp. 1393–1396, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. R. Guimerà, S. Mossa, A. Turtschi, and L. A. N. Amaral, “The worldwide air transportation network: anomalous centrality, community structure, and cities' global roles,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 22, pp. 7794–7799, 2005. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  6. A. Barrat, M. Barthélemy, and A. Vespignan, “Modeling the evolution of weighted networks,” Physical Review E, vol. 70, no. 6, Article ID 066149, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. H. Lu and Y. Shi, “Complexity of public transport networks,” Tsinghua Science and Technology, vol. 12, no. 2, pp. 204–213, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. J. Sienkiewicz and J. A. Hołyst, “Statistical analysis of 22 public transport networks in Poland,” Physical Review E, vol. 72, no. 4, Article ID 046127, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. Y. T. Mohmand and A. Wang, “Weighted complex network analysis of Pakistan Highways,” Discrete Dynamics in Nature and Society, vol. 2013, Article ID 862612, 5 pages, 2013. View at Publisher · View at Google Scholar
  10. K. S. Kim, L. Benguigui, and M. Marinov, “The fractal structure of Seoul's public transportation system,” Cities, vol. 20, no. 1, pp. 31–39, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. K. A. Seaton and L. M. Hackett, “Stations, trains and small-world networks,” Physica A, vol. 339, no. 3-4, pp. 635–644, 2004. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  12. P. Sen, S. Dasgupta, A. Chatterjee, P. A. Sreeram, G. Mukherjee, and S. S. Manna, “Small-world properties of the Indian railway network,” Physical Review E, vol. 67, no. 3, Article ID 036106, 2003. View at Scopus
  13. W. Li and X. Cai, “Empirical analysis of a scale-free railway network in China,” Physica A, vol. 382, no. 2, pp. 693–703, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. S. Ghosh, A. Banerjee, N. Sharma et al., “Statistical analysis of the Indian Railway Network: a complex network approach,” Acta Physica Polonica B, Proceedings Supplement, vol. 4, no. 2, pp. 123–138, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. T. Majima, M. Katuhara, and K. Takadama, “Analysis on transport networks of railway, subway and waterbus in Japan,” in Emergent Intelligence of Networked Agents, pp. 99–113, Springer, Berlin, Germany, 2007.
  16. L. Guo and X. Cai, “Degree and weighted properties of the directed China Railway Network,” International Journal of Modern Physics C, vol. 19, no. 12, pp. 1909–1918, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. R. Wang, J.-X. Tan, X. Wang, D.-J. Wang, and X. Cai, “Geographic coarse graining analysis of the railway network of China,” Physica A, vol. 387, no. 22, pp. 5639–5646, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. Y.-L. Wang, T. Zhou, J.-J. Shi, J. Wang, and D.-R. He, “Empirical analysis of dependence between stations in Chinese Railway Network,” Physica A, vol. 388, no. 14, pp. 2949–2955, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Kurant and P. Thiran, “Trainspotting: extraction and analysis of traffic and topologies of transportation networks,” Physical Review E, vol. 74, no. 3, Article ID 036114, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. D. J. Watts and S. H. Strogatz, “Collective dynamics of 'small-world9 networks,” Nature, vol. 393, no. 6684, pp. 440–442, 1998. View at Scopus
  21. P. Erdos and A. Rényi, “On the strength of connectedness of a random graph,” Acta Mathematica Academiae Scientiarum Hungaricae, vol. 12, no. 1-2, pp. 261–267, 1961. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  22. M. E. J. Newman, “Assortative mixing in networks,” Physical Review Letters, vol. 89, no. 20, Article ID 208701, 2002. View at Scopus
  23. U. Brandes, “On variants of shortest-path betweenness centrality and their generic computation,” Social Networks, vol. 30, no. 2, pp. 136–145, 2008. View at Publisher · View at Google Scholar · View at Scopus