About this Journal Submit a Manuscript Table of Contents
Discrete Dynamics in Nature and Society
Volume 2014 (2014), Article ID 564213, 9 pages
http://dx.doi.org/10.1155/2014/564213
Research Article

Credit Risk Evaluation with a Least Squares Fuzzy Support Vector Machines Classifier

Lean Yu1,2

1Alibaba Business College, Hangzhou Normal University, Hangzhou 310036, China
2School of Economics and Management, Beijing University of Chemical Technology, Beijing 100029, China

Received 12 February 2014; Accepted 27 May 2014; Published 12 June 2014

Academic Editor: Fenghua Wen

Copyright © 2014 Lean Yu. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. E. I. Altman, “Financial ratios, discriminant analysis and the prediction of corporate bankruptcy,” Journal of Finance, vol. 23, pp. 89–609, 1968.
  2. J. C. Wiginton, “A note on the comparison of logit and discriminant models of consumer credit behaviour,” Journal of Financial Quantitative Analysis, vol. 15, pp. 757–770, 1980. View at Publisher · View at Google Scholar
  3. B. J. Grablowsky and W. K. Talley, “Probit and discriminant functions for classifying credit applicants: a comparison,” Journal of Economic Business, vol. 33, pp. 254–261, 1981.
  4. F. Glover, “Improved linear programming models for discriminant analysis,” Decision Science, vol. 21, pp. 771–785, 1990. View at Publisher · View at Google Scholar
  5. O. L. Mangasarian, “Linear and nonlinear separation of patterns by linear programming,” Operations Research, vol. 13, pp. 444–452, 1965. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  6. W. E. Henley and D. J. Hand, “A k-nearest-neighbour classifier for assessing consumer credit risk,” Journal of the Royal Statistical Society Series D: The Statistician, vol. 45, no. 1, pp. 77–95, 1996. View at Scopus
  7. P. Makowski, “Credit scoring branches out,” Credit World, vol. 75, pp. 30–37, 1985.
  8. K. K. Lai, L. Yu, S. Y. Wang, and L. G. Zhou, “Neural network meta-learning for credit scoring,” in Intelligent Computing, vol. 4113 of Lecture Notes in Computer Science, pp. 403–408, 2006.
  9. R. Malhotra and D. K. Malhotra, “Evaluating consumer loans using neural networks,” Omega, vol. 31, no. 2, pp. 83–96, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. M.-C. Chen and S.-H. Huang, “Credit scoring and rejected instances reassigning through evolutionary computation techniques,” Expert Systems with Applications, vol. 24, no. 4, pp. 433–441, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. F. Varetto, “Genetic algorithms applications in the analysis of insolvency risk,” Journal of Banking and Finance, vol. 22, no. 10-11, pp. 1421–1439, 1998. View at Publisher · View at Google Scholar · View at Scopus
  12. Z. Zhu, H. He, J. A. Starzyk, and C. Tseng, “Self-organizing learning array and its application to economic and financial problems,” Information Sciences, vol. 177, no. 5, pp. 1180–1192, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. Z. Huang, H. Chen, C.-J. Hsu, W.-H. Chen, and S. Wu, “Credit rating analysis with support vector machines and neural networks: A Market Comparative Study,” Decision Support Systems, vol. 37, no. 4, pp. 543–558, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. K. K. Lai, L. Yu, L. G. Zhou, and S. Y. Wang, “Credit risk evaluation with least square support vector machine,” in Rough Sets and Knowledge Technology, vol. 4062 of Lecture Notes in Artificial Intelligence, pp. 490–495, 2006. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  15. K. K. Lai, L. Yu, W. Huang, and S. Y. Wang, “A novel support vector machine metamodel for business risk identification,” in PRICAI 2006: Trends in Artificial Intelligence, vol. 4099 of Lecture Notes in Artificial Intelligence, pp. 480–484, 2006.
  16. R. Malhotra and D. K. Malhotra, “Differentiating between good credits and bad credits using neuro-fuzzy systems,” European Journal of Operational Research, vol. 136, no. 1, pp. 190–211, 2002. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  17. L. Zhou, K. K. Lai, and L. Yu, “Least squares support vector machines ensemble models for credit scoring,” Expert Systems with Applications, vol. 37, no. 1, pp. 127–133, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. L. Zhou, K. K. Lai, and L. Yu, “Credit scoring using support vector machines with direct search for parameters selection,” Soft Computing, vol. 13, no. 2, pp. 149–155, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  19. L. Yu and X. Yao, “A total least squares proximal support vector classifier for credit risk evaluation,” Soft Computing, vol. 17, no. 4, pp. 643–650, 2013. View at Publisher · View at Google Scholar · View at Scopus
  20. L. Yu, X. Yao, S. Wang, and K. K. Lai, “Credit risk evaluation using a weighted least squares SVM classifier with design of experiment for parameter selection,” Expert Systems with Applications, vol. 38, no. 12, pp. 15392–15399, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. L. Yu, S. Wang, and J. Cao, “A modified least squares support vector machine classifier with application to credit risk analysis,” International Journal of Information Technology and Decision Making, vol. 8, no. 4, pp. 697–710, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  22. L. Yu, S. Wang, and K. K. Lai, “Credit risk evaluation using a c-variable least squares support vector classification model,” Communications in Computer and Information Science, vol. 35, pp. 573–579, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. T.-S. Lee, C.-C. Chiu, C.-J. Lu, and I.-F. Chen, “Credit scoring using the hybrid neural discriminant technique,” Expert Systems with Applications, vol. 23, no. 3, pp. 245–254, 2002. View at Publisher · View at Google Scholar · View at Scopus
  24. S. Piramuthu, “Financial credit-risk evaluation with neural and neurofuzzy systems,” European Journal of Operational Research, vol. 112, no. 2, pp. 310–321, 1999. View at Publisher · View at Google Scholar · View at Scopus
  25. Y. Wang, S. Wang, and K. K. Lai, “A new fuzzy support vector machine to evaluate credit risk,” IEEE Transactions on Fuzzy Systems, vol. 13, no. 6, pp. 820–831, 2005. View at Publisher · View at Google Scholar · View at Scopus
  26. L. Yu, S. Wang, F. Wen, K. K. Lai, and S. He, “Designing a hybrid intelligent mining system for credit risk evaluation,” Journal of Systems Science & Complexity, vol. 21, no. 4, pp. 527–539, 2008. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  27. R. Smalz and M. Conrad, “Combining evolution with credit apportionment: a new learning algorithm for neural nets,” Neural Networks, vol. 7, no. 2, pp. 341–351, 1994. View at Publisher · View at Google Scholar · View at Scopus
  28. K. K. Lai, L. Yu, S. Y. Wang, and L. G. Zhou, “Credit risk analysis using a reliability-based neural network ensemble model,” in Proceedings of the International Conference on Artificial Neural Networks (ICANN '06), vol. 4132 of Lecture Notes in Computer Science, pp. 682–690, 2006.
  29. L. Yu, S. Wang, and K. K. Lai, “Credit risk assessment with a multistage neural network ensemble learning approach,” Expert Systems with Applications, vol. 34, no. 2, pp. 1434–1444, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. L. Yu, W. Yue, S. Wang, and K. K. Lai, “Support vector machine based multiagent ensemble learning for credit risk evaluation,” Expert Systems with Applications, vol. 37, no. 2, pp. 1351–1360, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. L. Yu, S. Wang, and K. K. Lai, “An intelligent-agent-based fuzzy group decision making model for financial multicriteria decision support: the case of credit scoring,” European Journal of Operational Research, vol. 195, no. 3, pp. 942–959, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  32. L. C. Thomas, “A survey of credit and behavioural scoring: forecasting financial risk of lending to consumers,” International Journal of Forecasting, vol. 16, no. 2, pp. 149–172, 2000. View at Publisher · View at Google Scholar · View at Scopus
  33. L. C. Thomas, R. W. Oliver, and D. J. Hand, “A survey of the issues in consumer credit modelling research,” Journal of the Operational Research Society, vol. 56, no. 9, pp. 1006–1015, 2005. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  34. L. Yu, S. Y. Wang, K. K. Lai, and L. G. Zhou, Bio-Inspired Credit Risk Analysis—Computational Intelligence with Support Vector Machines, Springer, Berlin, Germany, 2008.
  35. C.-F. Lin and S.-D. Wang, “Fuzzy support vector machines,” IEEE Transactions on Neural Networks, vol. 13, no. 2, pp. 464–471, 2002. View at Publisher · View at Google Scholar · View at Scopus
  36. D. Tsujinishi and S. Abe, “Fuzzy least squares support vector machines for multiclass problems,” Neural Networks, vol. 16, no. 5-6, pp. 785–792, 2003. View at Publisher · View at Google Scholar · View at Scopus
  37. V. N. Vapnik, The Nature of Statistical Learning Theory, Springer, New York, NY, USA, 1995. View at Publisher · View at Google Scholar · View at MathSciNet
  38. R. Fletcher, Practical Methods of Optimization, A Wiley-Interscience Publication, John Wiley & Sons, 2nd edition, 1987. View at MathSciNet
  39. J. A. K. Suykens and J. Vandewalle, “Least squares support vector machine classifiers,” Neural Processing Letters, vol. 9, no. 3, pp. 293–300, 1999. View at Publisher · View at Google Scholar · View at Scopus
  40. L. C. Thomas, D. B. Edelman, and J. N. Crook, Credit Scoring and Its Applications, Society of Industrial and Applied Mathematics, Philadelphia, Pa, USA, 2002. View at Publisher · View at Google Scholar · View at MathSciNet
  41. M.-C. Chen, L.-S. Chen, C.-C. Hsu, and W.-R. Zeng, “An information granulation based data mining approach for classifying imbalanced data,” Information Sciences, vol. 178, no. 16, pp. 3214–3227, 2008. View at Publisher · View at Google Scholar · View at Scopus
  42. A. Celikyilmaz and I. B. Turksen, “Fuzzy functions with support vector machines,” Information Sciences, vol. 177, no. 23, pp. 5163–5177, 2007. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  43. L. Cao and F. E. H. Tay, “Financial forecasting using Support Vector Machines,” Neural Computing and Applications, vol. 10, no. 2, pp. 184–192, 2001. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  44. T. Van Gestel, B. Baesens, J. Garcia, and P. Van Dijcke, “A support vector machine approach to credit scoring,” Bank en Financiewezen, vol. 2, pp. 73–82, 2003.
  45. Q. McNemar, “Note on the sampling error of the difference between correlated proportions or percentages,” Psychometrika, vol. 12, no. 2, pp. 153–157, 1947. View at Publisher · View at Google Scholar · View at Scopus
  46. D. R. Cooper and C. W. Emory, Business Research Methods, Irwin, Chicago, Ill, USA, 1995.