About this Journal Submit a Manuscript Table of Contents
Discrete Dynamics in Nature and Society
Volume 2014 (2014), Article ID 709856, 12 pages
http://dx.doi.org/10.1155/2014/709856
Research Article

Optimizing the Joint Replenishment and Channel Coordination Problem under Supply Chain Environment Using a Simple and Effective Differential Evolution Algorithm

1School of Management, Huazhong University of Science & Technology, Wuhan 430074, China
2Economics and Management School, Wuhan University, Wuhan 430072, China

Received 12 April 2014; Revised 11 May 2014; Accepted 17 May 2014; Published 17 June 2014

Academic Editor: Stefan Balint

Copyright © 2014 Lin Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Axsäter and W.-F. Zhang, “Joint replenishment policy for multi-echelon inventory control,” International Journal of Production Economics, vol. 59, no. 1, pp. 243–250, 1999. View at Publisher · View at Google Scholar · View at Scopus
  2. L. Wang, J. He, D. Wu, and Y.-R. Zeng, “A novel differential evolution algorithm for joint replenishment problem under interdependence and its application,” International Journal of Production Economics, vol. 135, no. 1, pp. 190–198, 2012. View at Publisher · View at Google Scholar · View at Scopus
  3. A. L. Olsen, “An evolutionary algorithm to solve the joint replenishment problem using direct grouping,” Computers and Industrial Engineering, vol. 48, no. 2, pp. 223–235, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. I. K. Moon and B. C. Cha, “The joint replenishment problem with resource restriction,” European Journal of Operational Research, vol. 173, no. 1, pp. 190–198, 2006. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  5. M. Khouja and S. Goyal, “A review of the joint replenishment problem literature: 1989–2005,” European Journal of Operational Research, vol. 186, no. 1, pp. 1–16, 2008. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  6. H. Qu, L. Wang, and Y. R. Zeng, “Modeling and optimization for the joint replenishment and delivery problem with heterogeneous items,” Knowledge-Based Systems, vol. 54, pp. 207–215, 2013. View at Publisher · View at Google Scholar
  7. L. Wang, H. Qu, Y. Li, and J. He, “Modeling and optimization of stochastic joint replenishment and delivery scheduling problem with uncertain costs,” Discrete Dynamics in Nature and Society, vol. 2013, Article ID 657465, 12 pages, 2013. View at Publisher · View at Google Scholar · View at MathSciNet
  8. L. Wang, H. Qu, S. Liu, and C. X. Dun, “Modeling and optimization of the multiobjective stochastic joint replenishment and delivery problem under supply chain environment,” The Scientific World Journal, vol. 2013, Article ID 916057, 11 pages, 2013. View at Publisher · View at Google Scholar
  9. N. C. Büyükkaramikli, Ü. Gürler, and O. Alp, “Coordinated logistics: joint replenishment with capacitated transportation for a supply chain,” Production and Operations Management, vol. 23, no. 1, pp. 110–126, 2013. View at Publisher · View at Google Scholar · View at Scopus
  10. L. G. Cui, L. Wang, and J. Deng, “RFID technology investment evaluation model for the stochastic joint replenishment and delivery problem,” Expert Systems with Applications, vol. 41, no. 4, pp. 1792–1805, 2014.
  11. B. C. Cha and I. K. Moon, “The joint replenishment problem with quantity discounts under constant demand,” OR Spectrum, vol. 27, no. 4, pp. 569–581, 2005. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  12. I. K. Moon, S. K. Goyal, and B. C. Cha, “The joint replenishment problem involving multiple suppliers offering quantity discounts,” International Journal of Systems Science, vol. 39, no. 6, pp. 629–637, 2008. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  13. B. C. Cha and J. H. Park, “The joint replenishment and delivery scheduling involving multiplesuppliers offering different quantity discounts,” in Proceedings of the International Conference on Computers and Industrial Engineering (CIE '09), pp. 52–56, Troyes, France, July 2009. View at Scopus
  14. S.-L. Hsu, “Optimal joint replenishment decisions for a central factory with multiple satellite factories,” Expert Systems with Applications, vol. 36, no. 2, pp. 2494–2502, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. T.-H. Chen and J.-M. Chen, “Optimizing supply chain collaboration based on joint replenishment and channel coordination,” Transportation Research Part E: Logistics and Transportation Review, vol. 41, no. 4, pp. 261–285, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. L. Wang, J. He, and Y.-R. Zeng, “A differential evolution algorithm for joint replenishment problem using direct grouping and its application,” Expert Systems, vol. 29, no. 5, pp. 429–441, 2012. View at Publisher · View at Google Scholar · View at Scopus
  17. L. Wang, C.-X. Dun, W.-J. Bi, and Y.-R. Zeng, “An effective and efficient differential evolution algorithm for the integrated stochastic joint replenishment and delivery model,” Knowledge-Based Systems, vol. 36, pp. 104–114, 2012. View at Publisher · View at Google Scholar · View at Scopus
  18. J. Geunes and P. M. Pardalos, Supply Chain Optimization, Kluwer Academic Publishers, 2004.
  19. J. Geunes, P. M. Pardalos, and E. Romeijn, Supply Chain Management: Models, Applications, and Research Directions, Kluwer Academic Publishers, 2002.
  20. P. M. Pardalos, A. Migdalas, and G. Baourakis, Supply Chain and Finance, World Scientific, 2004.
  21. L. Wang, Q.-L. Fu, and Y.-R. Zeng, “Continuous review inventory models with a mixture of backorders and lost sales under fuzzy demand and different decision situations,” Expert Systems with Applications, vol. 39, no. 4, pp. 4181–4189, 2012. View at Publisher · View at Google Scholar · View at Scopus
  22. Y. H. Li, H. Guo, L. Wang, and J. Fu, “A hybrid genetic-simulated annealing algorithm for the location-inventory-routing problem considering returns under e-supply chain environment,” The Scientific World Journal, vol. 2013, Article ID 125893, 10 pages, 2013. View at Publisher · View at Google Scholar
  23. L. Wang, R. Yang, P. M. Pardalos, L. Qian, and M. Fei, “An adaptive fuzzy controller based on harmony search and its application to power plant control,” International Journal of Electrical Power and Energy Systems, vol. 53, no. 1, pp. 272–278, 2013. View at Publisher · View at Google Scholar · View at Scopus
  24. L. Cui, L. Wang, J. Deng, and J. Zhang, “A new improved quantum evolution algorithm with local search procedure for capacitated vehicle routing problem,” Mathematical Problems in Engineering, vol. 2013, Article ID 159495, 17 pages, 2013. View at Publisher · View at Google Scholar · View at MathSciNet
  25. J. Pei, X. B. Liu, P. M. Pardalos, W. J. Fan, S. Yang, and L. Wang, “Application of an effective modified gravitational search algorithm for the coordinated scheduling problem in a two-stage supply chain,” International Journal of Advanced Manufacturing Technology, vol. 70, no. 1–4, pp. 335–348, 2014.
  26. F. S. Al-Anzi and A. Allahverdi, “A self-adaptive differential evolution heuristic for two-stage assembly scheduling problem to minimize maximum lateness with setup times,” European Journal of Operational Research, vol. 182, no. 1, pp. 80–94, 2007. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  27. L. Wang, H. Qu, T. Chen, and F. P. Yan, “An effective hybrid self-adapting differential evolution algorithm for the joint replenishment and location-inventory problem in a three-level supply chain,” The Scientific World Journal, vol. 2013, Article ID 270249, 11 pages, 2013. View at Publisher · View at Google Scholar
  28. R. Storn and K. Price, “Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces,” Journal of Global Optimization, vol. 11, no. 4, pp. 341–359, 1997. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  29. Q.-K. Pan, L. Wang, and B. Qian, “A novel differential evolution algorithm for bi-criteria no-wait flow shop scheduling problems,” Computers & Operations Research, vol. 36, no. 8, pp. 2498–2511, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  30. J.-M. Chen and T.-H. Chen, “The multi-item replenishment problem in a two-echelon supply chain: the effect of centralization versus decentralization,” Computers and Operations Research, vol. 32, no. 12, pp. 3191–3207, 2005. View at Publisher · View at Google Scholar · View at Scopus
  31. A. Salman, A. P. Engelbrecht, and M. G. H. Omran, “Empirical analysis of self-adaptive differential evolution,” European Journal of Operational Research, vol. 183, no. 2, pp. 785–804, 2007. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  32. Y. Wang, B. Li, and T. Weise, “Estimation of distribution and differential evolution cooperation for large scale economic load dispatch optimization of power systems,” Information Sciences, vol. 180, no. 12, pp. 2405–2420, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. J. Brest, S. Greiner, B. Bošković, M. Mernik, and V. Zumer, “Self-adapting control parameters in differential evolution: a comparative study on numerical benchmark problems,” IEEE Transactions on Evolutionary Computation, vol. 10, no. 6, pp. 646–657, 2006. View at Publisher · View at Google Scholar · View at Scopus
  34. F. Neri and V. Tirronen, “Recent advances in differential evolution: a survey and experimental analysis,” Artificial Intelligence Review, vol. 33, no. 1-2, pp. 61–106, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. L. Wang, C.-X. Dun, C.-G. Lee, Q.-L. Fu, and Y.-R. Zeng, “Model and algorithm for fuzzy joint replenishment and delivery scheduling without explicit membership function,” International Journal of Advanced Manufacturing Technology, vol. 66, no. 9-12, pp. 1907–1920, 2013. View at Publisher · View at Google Scholar · View at Scopus
  36. Y.-R. Zeng, L. Wang, and J. He, “A novel approach for evaluating control criticality of spare parts using fuzzy comprehensive evaluation and GRA,” International Journal of Fuzzy Systems, vol. 14, no. 3, pp. 392–401, 2012. View at Scopus