About this Journal Submit a Manuscript Table of Contents
Discrete Dynamics in Nature and Society
Volume 2014 (2014), Article ID 739656, 16 pages
http://dx.doi.org/10.1155/2014/739656
Research Article

Dynamic Network Design Problem under Demand Uncertainty: An Adjustable Robust Optimization Approach

1MOE Key Laboratory for Urban Transportation Complex Systems Theory and Technology, Beijing Jiaotong University, Beijing 100044, China
2Institute of System Science, School of Traffic and Transportation, Beijing Jiaotong University, Beijing 100044, China

Received 31 October 2013; Accepted 18 December 2013; Published 17 February 2014

Academic Editor: Huimin Niu

Copyright © 2014 Hua Sun et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. D. Chung, T. Yao, C. Xie, and A. Thorsen, “Robust optimization model for a dynamic design problem under demand uncertainty,” Networks and Spatial Economics, vol. 11, no. 2, pp. 371–389, 2011. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  2. S. T. Waller, J. L. Schofer, and A. K. Ziliaskopoulos, “Evaluation with traffic assignment under demand uncertainty,” Transportation Research Record, no. 1771, pp. 69–74, 2001. View at Scopus
  3. A. Chen, Z. Zhou, P. Chootinan, S. Ryu, C. Yang, and S. C. Wong, “Transportation network design under uncertainty: a review and new developments,” Transport Reviews, vol. 31, no. 6, pp. 743–768, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. T. L. Magnanti and R. T. Wong, “Network design and transportation planning: models and algorithms,” Transportation Science, vol. 18, no. 1, pp. 1–55, 1984. View at Scopus
  5. M. Minoux, “Network synthesis and optimum network design problems: models, solution methods and applications,” Networks, vol. 19, no. 3, pp. 313–360, 1989. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  6. H. Yang and M. G. H. Bell, “Models and algorithms for road network design: a review and some new developments,” Transport Reviews, vol. 18, no. 3, pp. 257–278, 1998. View at Scopus
  7. D.-Y. Lin, A. Karoonsoontawong, and S. T. Waller, “A Dantzig-Wolfe decomposition based heuristic scheme for bi-level dynamic network design problem,” Networks and Spatial Economics, vol. 11, no. 1, pp. 101–126, 2011. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  8. K. Jeon, S. V. Ukkusuri, and S. T. Waller, “Heuristic approach for discrete network design problem accounting for dynamic traffic assignment conditions: formulation, solution methodologies, implementations and computation experiences,” in Proceedings of the 84th Annual Meeting of the Transportation Research Board, Washington, DC, USA, 2005.
  9. S. T. Waller, K. C. Mouskos, D. Kamaryiannis, and A. K. Ziliaskopoulos, “A linear model for the continuous network design problem,” Computer-Aided Civil and Infrastructure Engineering, vol. 21, no. 5, pp. 334–345, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. S. V. Ukkusuri and S. T. Waller, “Linear programming models for the user and system optimal dynamic network design problem: formulations, comparisons and extensions,” Networks and Spatial Economics, vol. 8, no. 4, pp. 383–406, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. D.-Y. Lin, “A dual variable approximation-based descent method for a bi-level continuous dynamic network design problem,” Computer-Aided Civil and Infrastructure Engineering, vol. 26, no. 8, pp. 581–594, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. B. N. Janson, “Network design effects of dynamic traffic assignment,” Journal of Transportation Engineering, vol. 121, no. 1, pp. 1–13, 1995. View at Publisher · View at Google Scholar · View at Scopus
  13. S. T. Waller, Optimization and control of stochastic dynamic transportation system: formulations, solution methodologies, and computational experience [Ph.D. dissertation], Northwestern University, 2000.
  14. S. T. Waller and A. K. Ziliaskopoulos, “Stochastic dynamic network design problem,” Transportation Research Record, no. 1771, pp. 106–113, 2001. View at Scopus
  15. A. Karoonsoontawong and S. T. Waller, “Comparison of system- and user-optimal stochastic dynamic network design models using Monte Carlo bounding techniques,” Transportation Research Record, vol. 1923, pp. 91–102, 2005. View at Publisher · View at Google Scholar
  16. A. Karoonsoontawong and S. T. Waller, “Dynamic continuous network design problem: linear bilevel programming and metaheuristic approaches,” Transportation Research Record, no. 1964, pp. 104–117, 2006. View at Scopus
  17. A. Karoonsoontawong and S. T. Waller, “Robust dynamic continuous network design problem,” Transportation Research Record, no. 2029, pp. 58–71, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. A. Karoonsoontawong and S. T. Waller, “Integrated network capacity expansion and traffic signal optimization problem: robust bi-level dynamic formulation,” Networks and Spatial Economics, vol. 10, no. 4, pp. 525–550, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  19. C. F. Daganzo, “The cell transmission model: a dynamic representation of highway traffic consistent with the hydrodynamic theory,” Transportation Research Part B, vol. 28, no. 4, pp. 269–287, 1994. View at Scopus
  20. C. F. Daganzo, “The cell transmission model—part II: network traffic,” Transportation Research Part B, vol. 29, no. 2, pp. 79–93, 1995. View at Scopus
  21. A. K. Ziliaskopoulos, “Linear programming model for the single destination System Optimum Dynamic Traffic Assignment problem,” Transportation Science, vol. 34, no. 1, pp. 37–49, 2000. View at Scopus
  22. A. Ben-Tal, A. Goryashko, E. Guslitzer, and A. Nemirovski, “Adjustable robust solutions of uncertain linear programs,” Mathematical Programming. A Publication of the Mathematical Programming Society, vol. 99, no. 2, pp. 351–376, 2004. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  23. A. Ben-Tal and A. Nemirovski, “Robust convex optimization,” Mathematics of Operations Research, vol. 23, no. 4, pp. 769–805, 1998. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  24. A. Ben-Tal and A. Nemirovski, “Robust solutions of uncertain linear programs,” Operations Research Letters, vol. 25, no. 1, pp. 1–13, 1999. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  25. A. Ben-Tal and A. Nemirovski, “Robust solutions of linear programming problems contaminated with uncertain data,” Mathematical Programming, vol. 88, no. 3, pp. 411–424, 2000. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  26. A. Ben-Tal and A. Nemirovski, “Robust optimization—methodology and applications,” Mathematical Programming, vol. 92, no. 3, pp. 453–480, 2002. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  27. D. Bertsimas and M. Sim, “The price of robustness,” Operations Research, vol. 52, no. 1, pp. 35–53, 2004. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  28. J. M. Mulvey, R. J. Vanderbei, and S. A. Zenios, “Robust optimization of large-scale systems,” Operations Research, vol. 43, no. 2, pp. 264–281, 1995. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  29. Y. Yin and S. Lawphongpanich, “A robust approach to continuous network design problems with demand uncertainty,” in Proceedings of 17th International Symposium of Transportation and Traffic Theory, R. E. Allsop, M. G. H. Bell, and B. G. Heydecker, Eds., pp. 111–126, 2007.
  30. Y. Yin, S. M. Madanat, and X.-Y. Lu, “Robust improvement schemes for road networks under demand uncertainty,” European Journal of Operational Research, vol. 198, no. 2, pp. 470–479, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  31. Y. Lou, Y. Yin, and S. Lawphongpanich, “Robust approach to discrete network designs with demand uncertainty,” Transportation Research Record, no. 2090, pp. 86–94, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. T. Yao, S. R. Mandala, and B. D. Chung, “Evacuation transportation planning under uncertainty: a robust optimization approach,” Networks and Spatial Economics, vol. 9, no. 2, pp. 171–189, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  33. B. D. Chung, T. Yao, T. L. Friesz, and H. Liu, “Dynamic congestion pricing with demand uncertainty: a robust optimization approach,” Transportation Research Part B, vol. 46, no. 10, pp. 1504–1518, 2012.
  34. A. Ben-Tal, B. D. Chung, S. R. Mandala, and T. Yao, “Robust optimization for emergency logistics planning: risk mitigation in humanitarian relief supply chains,” Transportation Research Part B, vol. 45, no. 8, pp. 1177–1189, 2011. View at Publisher · View at Google Scholar · View at Scopus
  35. K. Doan and S. V. Ukkusuri, “On the holding back problem in the cell transmission based dynamic traffic assignment models,” Transportation Research Part B, vol. 46, no. 9, pp. 1218–1238.
  36. S. Travis Waller and A. K. Ziliaskopoulos, “A chance-constrained based stochastic dynamic traffic assignment model: analysis, formulation and solution algorithms,” Transportation Research C, vol. 14, no. 6, pp. 418–427, 2006. View at Publisher · View at Google Scholar · View at Scopus
  37. A. Brooke, D. Kendirick, and A. Meeraus, GAMS: A USer’s Guide, The Scientific Press, San Franciso, Calif, USA, 1992.
  38. F. Zhu and S. V. Ukkusuri, “A cell based dynamic system optimum model with non-holding back flows,” Transportation Research Part C, vol. 36, pp. 367–380, 2013.
  39. A. Ben-Tal, S. Boyd, and A. Nemirovski, “Extending scope of robust optimization: comprehensive robust counterparts of uncertain problems,” Mathematical Programming, vol. 107, no. 1-2, pp. 63–89, 2006. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  40. Y. Li, S. T. Waller, and T. Ziliaskopoulos, “A decomposition scheme for system optimal dynamic traffic assignment models,” Network Spatial Economic, vol. 3, no. 4, pp. 441–455, 2003.