About this Journal Submit a Manuscript Table of Contents
Discrete Dynamics in Nature and Society
Volume 2014 (2014), Article ID 907052, 8 pages
http://dx.doi.org/10.1155/2014/907052
Research Article

Effects of Empty Sites on Cooperation in the Prisoner’s Dilemma Game Based on Social Diversity

1Department of Physics, Langfang Teachers College, Langfang 065000, China
2Department of Physics, Tianjin University of Technology, Tianjin 300191, China

Received 19 July 2013; Revised 30 November 2013; Accepted 3 December 2013; Published 14 January 2014

Academic Editor: Gualberto Solís-Perales

Copyright © 2014 Wang Liming and Feng Wu. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. W. D. Hamilton, “The genetical evolution of social behaviour—I,” Journal of Theoretical Biology, vol. 7, no. 1, pp. 1–16, 1964. View at Scopus
  2. R. Axelrod and W. D. Hamilton, “The evolution of cooperation,” Science, vol. 211, no. 4489, pp. 1390–1396, 1981. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  3. E. Fehr and S. Gächter, “Altruistic punishment in humans,” Nature, vol. 415, no. 6868, pp. 137–140, 2002. View at Publisher · View at Google Scholar · View at Scopus
  4. C. Hauert, S. De Monte, J. Hofbauer, and K. Sigmund, “Volunteering as Red Queen mechanism for cooperation in public goods games,” Science, vol. 296, no. 5570, pp. 1129–1132, 2002. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Perc, “Chaos promotes cooperation in the spatial prisoner's dilemma game,” Europhysics Letters, vol. 75, no. 6, pp. 841–846, 2006. View at Publisher · View at Google Scholar · View at MathSciNet
  6. M. A. Nowak and R. M. May, “The spatial dilemmas of evolution,” International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, vol. 3, no. 1, pp. 35–78, 1993. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  7. M. A. Nowak and K. Sigmund, “Evolutionary dynamics of biological games,” Science, vol. 303, no. 5659, pp. 793–799, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. M. A. Nowak and R. M. May, “Evolutionary games and spatial chaos,” Nature, vol. 359, no. 6398, pp. 826–829, 1992. View at Publisher · View at Google Scholar · View at Scopus
  9. F. C. Santos and J. M. Pacheco, “Scale-free networks provide a unifying framework for the emergence of cooperation,” Physical Review Letters, vol. 95, no. 9, Article ID 098104, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. G. Abramson and M. Kuperman, “Social games in a social network,” Physical Review E, vol. 63, no. 3, Article ID 030901, 4 pages, 2001. View at Scopus
  11. E. Lleberman, C. Hauert, and M. A. Howak, “Evolutionary dynamics on graphs,” Nature, vol. 433, no. 7023, pp. 312–316, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. W.-X. Wang, J. Ren, G. Chen, and B.-H. Wang, “Memory-based snowdrift game on networks,” Physical Review E, vol. 74, no. 5, Article ID 056113, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. X. Chen and L. Wang, “Promotion of cooperation induced by appropriate payoff aspirations in a small-world networked game,” Physical Review E, vol. 77, no. 1, Article ID 017103, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. J. Ren, W.-X. Wang, and F. Qi, “Randomness enhances cooperation: a resonance-type phenomenon in evolutionary games,” Physical Review E, vol. 75, no. 4, Article ID 045101, 4 pages, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. Z. Rong, X. Li, and X. Wang, “Roles of mixing patterns in cooperation on a scale-free networked game,” Physical Review E, vol. 76, no. 2, Article ID 027101, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Tomassini, E. Pestelacci, and L. Luthi, “Social dilemmas and cooperation in complex networks,” International Journal of Modern Physics C, vol. 18, no. 7, pp. 1173–1185, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. M. N. Kuperman and S. Risau-Gusman, “The effect of the topology on the spatial ultimatum game,” European Physical Journal B, vol. 62, no. 2, pp. 233–238, 2008. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  18. J. Poncela, J. Gómez-Gardeñes, L. M. Floría, and Y. Moreno, “Robustness of cooperation in the evolutionary prisoner's dilemma on complex networks,” New Journal of Physics, vol. 9, article 184, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. H. X. Yang, W. X. Wang, Z. X. Wu, Y. C. Lai, and B. H. Wang, “Diversity-optimized cooperation on complex networks,” Physical Review E, vol. 79, no. 5, Article ID 056107, 7 pages, 2009.
  20. Y.-Z. Chen, Z.-G. Huang, S.-J. Wang, Y. Zhang, and Y.-H. Wang, “Diversity of rationality affects the evolution of cooperation,” Physical Review E, vol. 79, no. 5, Article ID 055101, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. M. Droz, J. Szwabinski, and G. Szabó, “Motion of influential players can support cooperation in Prisoner’s Dilemma,” European Physical Journal B, vol. 71, no. 4, pp. 579–585, 2009.
  22. A. Szolnoki and G. Szabó, “Cooperation enhanced by inhomogeneous activity of teaching for evolutionary prisoner's dilemma games,” Europhysics Letters, vol. 77, no. 3, Article ID 30004, 5 pages, 2007. View at Publisher · View at Google Scholar · View at MathSciNet
  23. Z.-H. Li, B.-H. W, R. - Liu, and H.-X. Yang, “Evolutionary prisoner's dilemma game based on division of work,” Chinese Physics Letters, vol. 26, no. 10, Article ID 108701, 4 pages, 2009.
  24. Z.-X. Wu, X.-J. Xu, Z.-G. Huang, S.-J. Wang, and Y.-H. Wang, “Evolutionary prisoner's dilemma game with dynamic preferential selection,” Physical Review E, vol. 74, no. 2, Article ID 021107, 7 pages, 2006. View at Publisher · View at Google Scholar · View at MathSciNet
  25. M. Perc, A. Szolnoki, and G. Szabó, “Restricted connections among distinguished players support cooperation,” Physical Review E, vol. 78, no. 6, Article ID 066101, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. C.-L. Tang, W.-X. Wang, X. Wu, and B.-H. Wang, “Effects of average degree on cooperation in networked evolutionary game,” European Physical Journal B, vol. 53, no. 3, pp. 411–415, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. G. Szabó and A. Szolnoki, “Cooperation in spatial prisoner's dilemma with two types of players for increasing number of neighbors,” Physical Review E, vol. 79, no. 1, Article ID 016106, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. M. H. Vainstein and J. J. Arenzon, “Disordered environments in spatial games,” Physical Review E, vol. 64, no. 5, Article ID 051905, 6 pages, 2001. View at Scopus
  29. Z. Wang, A. Szolnoki, and M. Perc, “If players are sparse social dilemmas are too: importance of percolation for evolution of cooperation,” Scientific Reports, vol. 2, Article ID 00369, 2012. View at Publisher · View at Google Scholar · View at Scopus
  30. Z. Wang, A. Szolnoki, and M. Perc, “Percolation threshold determines the optimal population density for public cooperation,” Physical Review E, vol. 85, no. 3, Article ID 037101, 2012. View at Publisher · View at Google Scholar · View at Scopus
  31. J. Mitteldorf and D. S. Wilson, “Population viscosity and the evolution of altruism,” Journal of Theoretical Biology, vol. 204, no. 4, pp. 481–496, 2000. View at Publisher · View at Google Scholar · View at Scopus
  32. M. A. Nowak, S. Bonhoeffer, and R. M. May, “Spatial games and the maintenance of cooperation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 91, no. 11, pp. 4877–4881, 1994. View at Publisher · View at Google Scholar · View at Scopus
  33. M. Perc, J. G. Gómez-Gardeñes, A. Szolnoki, L. M. Floría, and Y. Moreno, “Evolutionary dynamics of group interactions on structured populations: a review,” Journal of the Royal Society Interface, vol. 10, no. 80, Article ID 0907, 17 pages, 2013.
  34. M. Perc and P. Grigolini, “Collective behavior and evolutionary games—an introduction,” Chaos, Solitons & Fractals, vol. 56, pp. 1–5, 2013. View at Publisher · View at Google Scholar · View at MathSciNet
  35. M. Perc and A. Szolnoki, “Coevolutionary games-A mini review,” BioSystems, vol. 99, no. 2, pp. 109–125, 2010. View at Publisher · View at Google Scholar · View at Scopus
  36. M. Perc and A. Szolnoki, “Social diversity and promotion of cooperation in the spatial prisoner's dilemma game,” Physical Review E, vol. 77, no. 1, Article ID 011904, 2008. View at Publisher · View at Google Scholar · View at Scopus