About this Journal Submit a Manuscript Table of Contents
Dermatology Research and Practice
Volume 2011 (2011), Article ID 518090, 7 pages
http://dx.doi.org/10.1155/2011/518090
Review Article

Nonsegmental Vitiligo and Autoimmune Mechanism

1Department of Dermatology, Kinki University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan
2Department of Dermatology, Yamagata University School of Medicine, Yamagata 990-9585, Japan
3Department of Dermatology, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan
4Department of Dermatology, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan

Received 31 March 2011; Revised 30 May 2011; Accepted 1 June 2011

Academic Editor: Davinder Parsad

Copyright © 2011 Naoki Oiso et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Y. Jin, C. M. Mailloux, K. Gowan et al., “NALP1 in vitiligo-associated multiple autoimmune disease,” New England Journal of Medicine, vol. 356, no. 12, pp. 1216–1225, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  2. Y. Jin, S. A. Birlea, P. R. Fain et al., “Variant of TYR and autoimmunity susceptibility loci in generalized vitiligo,” New England Journal of Medicine, vol. 362, no. 18, pp. 1686–1697, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  3. Y. Jin, S. A. Birlea, P. R. Fain et al., “Common variants in FOXP1 are associated with generalized vitiligo,” Nature Genetics, vol. 42, no. 7, pp. 576–578, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  4. S. A. Birlea, Y. Jin, D. C. Bennett et al., “Comprehensive association analysis of candidate genes for generalized vitiligo supports XBP1, FOXP3, and TSLP,” Journal of Investigative Dermatology, vol. 131, no. 6, pp. 371–381, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  5. C. Quan, Y. Q. Ren, L. H. Xiang et al., “Genome-wide association study for vitiligo identifies susceptibility loci at 6q27 and the MHC,” Nature Genetics, vol. 42, no. 7, pp. 614–618, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  6. C. Q. Wang, A. E. Cruz-Inigo, J. Fuentes-Duculan et al., “Th17 cells and activated dendritic cells are increased in vitiligo lesions,” PLoS ONE, vol. 6, no. 4, article e18907, 2011. View at Publisher · View at Google Scholar · View at PubMed
  7. R. K. Gregg, L. Nichols, Y. Chen, B. Lu, and V. H. Engelhard, “Mechanisms of spatial and temporal development of autoimmune vitiligo in tyrosinase-specific TCR transgenic mice,” Journal of Immunology, vol. 184, no. 4, pp. 1909–1917, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  8. K. I. Yamanaka, M. Kakeda, H. Kitagawa et al., “1,24-Dihydroxyvitamin D3 (tacalcitol) prevents skin T-cell infiltration,” British Journal of Dermatology, vol. 162, no. 6, pp. 1206–1215, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  9. J. G. Van Den Boorn, D. Konijnenberg, T. A. Dellemijn et al., “Autoimmune destruction of skin melanocytes by perilesional T cells from vitiligo patients,” Journal of Investigative Dermatology, vol. 129, no. 9, pp. 2220–2232, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  10. A. Wańkowicz-Kalińska, R. M. Van den Wijngaard, B. J. Tigges et al., “Immunopolarization of CD4+ and CD8+ T cells to type-1-like is associated with melanocyte loss in human vitiligo,” Laboratory Investigation, vol. 83, no. 5, pp. 683–695, 2003. View at Scopus
  11. P. Y. Basak, A. K. Adiloglu, A. M. Ceyhan, T. Tas, and V. B. Akkaya, “The role of helper and regulatory T cells in the pathogenesis of vitiligo,” Journal of the American Academy of Dermatology, vol. 60, no. 2, pp. 256–260, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  12. J. Klarquist, C. J. Denman, C. Hernandez et al., “Reduced skin homing by functional Treg in vitiligo,” Pigment Cell and Melanoma Research, vol. 23, no. 2, pp. 276–286, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  13. A. Pontillo, A. Vendramin, E. Catamo, A. Fabris, and S. Crovella, “The missense variation Q705K in CIAS1/NALP3/NLRP3 gene and an NLRP1 haplotype are associated with celiac disease,” American Journal of Gastroenterology, vol. 106, no. 3, pp. 539–544, 2011. View at Publisher · View at Google Scholar · View at PubMed
  14. S. M. Gregory, B. K. Davis, J. A. West et al., “Discovery of a viral NLR homolog that inhibits the inflammasome,” Science, vol. 331, no. 6015, pp. 330–334, 2011. View at Publisher · View at Google Scholar · View at PubMed
  15. M. Zurawek, M. Fichna, D. Januszkiewicz-Lewandowska, M. Gryczyńska, P. Fichna, and J. Nowak, “A coding variant in NLRP1 is associated with autoimmune Addison's disease,” Human Immunology, vol. 71, no. 5, pp. 530–534, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  16. P. J. Shaw, M. Lamkanfi, and T. D. Kanneganti, “NOD-like receptor (NLR) signaling beyond the inflammasome,” European Journal of Immunology, vol. 40, no. 3, pp. 624–627, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  17. N. F. Magitta, A. S. Bøe Wolff, S. Johansson et al., “A coding polymorphism in NALP1 confers risk for autoimmune Addison's disease and type 1 diabetes,” Genes and Immunity, vol. 10, no. 2, pp. 120–124, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  18. J. P. Ting, R. C. Lovering, E. S. Alnemri et al., “The NLR gene family: a standard nomenclature,” Immunity, vol. 28, no. 3, pp. 285–287, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  19. T. D. Kanneganti, M. Lamkanfi, and G. Núñez, “Intracellular NOD-like receptors in host defense and disease,” Immunity, vol. 27, no. 4, pp. 549–559, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  20. S. Mariathasan, D. S. Weiss, K. Newton et al., “Cryopyrin activates the inflammasome in response to toxins and ATP,” Nature, vol. 440, no. 7081, pp. 228–232, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  21. M. Roycroft, M. Fichna, D. McDonald et al., “The tryptophan 620 allele of the lymphoid tyrosine phosphatase (PTPN22) gene predisposes to autoimmune Addison's disease,” Clinical Endocrinology, vol. 70, no. 3, pp. 358–362, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  22. T. Vang, A. V. Miletic, Y. Arimura, L. Tautz, R. C. Rickert, and T. Mustelin, “Protein tyrosine phosphatases in autoimmunity,” Annual Review of Immunology, vol. 26, pp. 29–55, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  23. R. C. Betz, K. König, A. Flaquer et al., “The R620W polymorphism in PTPN22 confers general susceptibility for the development of alopecia areata,” British Journal of Dermatology, vol. 158, no. 2, pp. 389–391, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  24. E. H. Kemp, A. J. G. McDonagh, D. A. Wengraf et al., “The non-synonymous C1858T substitution in the PTPN22 gene is associated with susceptibility to the severe forms of alopecia areata,” Human Immunology, vol. 67, no. 7, pp. 535–539, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  25. T. Vang, M. Congia, M. D. Macis et al., “Autoimmune-associated lymphoid tyrosine phosphatase is a gain-of-function variant,” Nature Genetics, vol. 37, no. 12, pp. 1317–1319, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  26. G. Orozco, E. Sánchez, M. A. González-Gay et al., “Association of a functional single-nucleotide polymorphism of PTPN22, encoding lymphoid protein phosphatase, with rheumatoid arthritis and systemic lupus erythematosus,” Arthritis and Rheumatism, vol. 52, no. 1, pp. 219–224, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  27. N. Bottini, L. Musumeci, A. Alonso et al., “A functional variant of lymphoid tyrosine phosphatase is associated with type I diabetes,” Nature Genetics, vol. 36, no. 4, pp. 337–338, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  28. A. B. Begovich, V. E. H. Carlton, L. A. Honigberg et al., “A missense single-nucleotide polymorphism in a gene encoding a protein tyrosine phosphatase (PTPN22) is associated with rheumatoid arthritis,” American Journal of Human Genetics, vol. 75, no. 2, pp. 330–337, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  29. C. Kyogoku, C. D. Langefeld, W. A. Ortmann et al., “Genetic association of the R620W polymorphism of protein tyrosine phosphatase PTPN22 with human SLE,” American Journal of Human Genetics, vol. 75, no. 3, pp. 504–507, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  30. M. R. Velaga, V. Wilson, C. E. Jennings et al., “The codon 620 tryptophan allele of the lymphoid tyrosine phosphatase (LYP) gene is a major determinant of Graves' disease,” Journal of Clinical Endocrinology and Metabolism, vol. 89, no. 11, pp. 5862–5865, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  31. P. A. Van Der Merwe and O. Dushek, “Mechanisms for T cell receptor triggering,” Nature Reviews Immunology, vol. 11, no. 1, pp. 47–55, 2011. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  32. K. W. Wucherpfennig and D. Sethi, “T cell receptor recognition of self and foreign antigens in the induction of autoimmunity,” Seminars in Immunology, vol. 23, no. 2, pp. 84–91, 2011. View at Publisher · View at Google Scholar · View at PubMed
  33. L. Handunnetthi, S. V. Ramagopalan, G. C. Ebers, and J. C. Knight, “Regulation of major histocompatibility complex class II gene expression, genetic variation and disease,” Genes and Immunity, vol. 11, no. 2, pp. 99–112, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  34. F. Menconi, R. Osman, M. C. Monti, D. A. Greenberg, E. S. Concepcion, and Y. Tomer, “Shared molecular amino acid signature in the HLA-DR peptide binding pocket predisposes to both autoimmune diabetes and thyroiditis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 39, pp. 16899–16903, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  35. L. Petukhova, M. Duvic, M. Hordinsky et al., “Genome-wide association study in alopecia areata implicates both innate and adaptive immunity,” Nature, vol. 466, no. 7302, pp. 113–117, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  36. A. A. Zeitlin, M. J. Simmonds, and S. C. Gough, “Genetic developments in autoimmune thyroid disease: an evolutionary process,” Clinical Endocrinology, vol. 68, no. 5, pp. 671–682, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  37. N. Barahmani, M. De Andrade, J. P. Slusser et al., “Human leukocyte antigen class II alleles are associated with risk of alopecia areata,” Journal of Investigative Dermatology, vol. 128, no. 1, pp. 240–243, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  38. N. Barahmani, M. De Andrade, J. P. Slusser, Q. Zhang, and M. Duvic, “Major histocompatibility complex class I chain-related gene a polymorphisms and extended haplotypes are associated with familial alopecia areata,” Journal of Investigative Dermatology, vol. 126, no. 1, pp. 74–78, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  39. N. Lench, M. M. Iles, I. Mackay et al., “Single-point haplotype scores telomeric to human leukocyte antigen-C give a high susceptibility major histocompatability complex haplotype for psoriasis in a Caucasian population,” Journal of Investigative Dermatology, vol. 124, no. 3, pp. 545–552, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  40. J. L. Newton, S. M. J. Harney, B. P. Wordsworth, and M. A. Brown, “A review of the MHC genetics of rheumatoid arthritis,” Genes and Immunity, vol. 5, no. 3, pp. 151–157, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  41. C. E. Larsen and C. A. Alper, “The genetics of HLA-associated disease,” Current Opinion in Immunology, vol. 16, no. 5, pp. 660–667, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  42. R. P. Nair, P. Stuart, T. Henseler et al., “Localization of psoriasis-susceptibility locus PSORS1 to a 60-kb interval telomeric to HLA-C,” American Journal of Human Genetics, vol. 66, no. 6, pp. 1833–1844, 2000. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  43. C. G. Drake and B. L. Kotzin, “Genetic and immunological mechanisms in the pathogenesis of systemic lupus erythematosus,” Current Opinion in Immunology, vol. 4, no. 6, pp. 733–740, 1992. View at Publisher · View at Google Scholar · View at Scopus
  44. J. H. Buckner, “Mechanisms of impaired regulation by CD4+ CD25+ FOXP3+ regulatory T cells in human autoimmune diseases,” Nature Reviews Immunology, vol. 10, no. 12, pp. 849–859, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  45. N. Oiso, “Regulatory T cells in atopic dermatitis,” Recent Patents on Inflammation and Allergy Drug Discovery, vol. 4, no. 3, pp. 244–248, 2010. View at Scopus
  46. N. Inoue, M. Watanabe, M. Morita et al., “Association of functional polymorphisms related to the transcriptional level of FOXP3 with prognosis of autoimmune thyroid diseases,” Clinical and Experimental Immunology, vol. 162, no. 3, pp. 402–406, 2010.
  47. E. D'Hennezel, M. Ben-Shoshan, H. D. Ochs et al., “FOXP3 forkhead domain mutation and regulatory T cells in the IPEX syndrome,” New England Journal of Medicine, vol. 361, no. 17, pp. 1710–1713, 2009. View at Scopus
  48. M. A. Curotto de Lafaille and J. J. Lafaille, “Natural and adaptive foxp3+ regulatory T cells: more of the same or a division of labor?” Immunity, vol. 30, no. 5, pp. 626–635, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  49. M. J. B. Villano, A. K. Huber, D. A. Greenberg, B. K. Golden, E. Concepcion, and Y. Tomer, “Autoimmune thyroiditis and diabetes: dissecting the joint genetic susceptibility in a large cohort of multiplex families,” Journal of Clinical Endocrinology and Metabolism, vol. 94, no. 4, pp. 1458–1466, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  50. Z. Zhou, X. Song, B. Li, and M. I. Greene, “FOXP3 and its partners: structural and biochemical insights into the regulation of FOXP3 activity,” Immunologic Research, vol. 42, no. 1–3, pp. 19–28, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  51. Y. Liu, C. Helms, W. Liao et al., “A genome-wide association study of psoriasis and psoriatic arthritis identifies new disease loci,” PLoS Genetics, vol. 4, no. 3, Article ID e1000041, 2008. View at Publisher · View at Google Scholar · View at PubMed
  52. M. Akdis, K. Blaser, and C. A. Akdis, “T regulatory cells in allergy: novel concepts in the pathogenesis, prevention, and treatment of allergic diseases,” Journal of Allergy and Clinical Immunology, vol. 116, no. 5, pp. 961–969, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  53. R. S. Wildin, F. Ramsdell, J. Peake et al., “X-linked neonatal diabetes mellitus, enteropathy and endocrinopathy syndrome is the human equivalent of mouse scurfy,” Nature Genetics, vol. 27, no. 1, pp. 18–20, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  54. C. L. Bennett, J. Christie, F. Ramsdell et al., “The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3,” Nature Genetics, vol. 27, no. 1, pp. 20–21, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  55. E. A. Stahl, S. Raychaudhuri, E. F. Remmers et al., “Genome-wide association study meta-analysis identifies seven new rheumatoid arthritis risk loci,” Nature Genetics, vol. 42, no. 6, pp. 508–514, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  56. J. C. Crispín and G. C. Tsokos, “Transcriptional regulation of IL-2 in health and autoimmunity,” Autoimmunity Reviews, vol. 8, no. 3, pp. 190–195, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  57. E. J. Carr, M. R. Clatworthy, C. E. Lowe et al., “Contrasting genetic association of IL2RA with SLE and ANCA-associated vasculitis,” BMC Medical Genetics, vol. 10, article 22, 2009. View at Publisher · View at Google Scholar · View at PubMed
  58. C. E. Lowe, J. D. Cooper, T. Brusko et al., “Large-scale genetic fine mapping and genotype-phenotype associations implicate polymorphism in the IL2RA region in type 1 diabetes,” Nature Genetics, vol. 39, no. 9, pp. 1074–1082, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  59. M. F. Bachmann and A. Oxenius, “Interleukin 2: from immunostimulation to immunoregulation and back again,” EMBO Reports, vol. 8, no. 12, pp. 1142–1148, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  60. A. Laurence, C. M. Tato, T. S. Davidson et al., “Interleukin-2 Signaling via STAT5 Constrains T Helper 17 Cell Generation,” Immunity, vol. 26, no. 3, pp. 371–381, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  61. O. J. Brand, C. E. Lowe, J. M. Heward et al., “Association of the interleukin-2 receptor alpha (IL-2Rα)/CD25 gene region with Graves' disease using a multilocus test and tag SNPs,” Clinical Endocrinology, vol. 66, no. 4, pp. 508–512, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  62. A. Vella, J. D. Cooper, C. E. Lowe et al., “Localization of a type 1 diabetes locus in the IL2RA/CD25 region by use of tag single-nucleotide polymorphisms,” American Journal of Human Genetics, vol. 76, no. 5, pp. 773–779, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  63. M. F. Bachmann and M. Kopf, “Balancing protective immunity and immunopathology,” Current Opinion in Immunology, vol. 14, no. 4, pp. 413–419, 2002. View at Publisher · View at Google Scholar · View at Scopus
  64. B. Kneitz, T. Herrmann, S. Yonehara, and A. Schimpl, “Normal clonal expansion but impaired Fas-mediated cell death and anergy induction in interleukin-2-deficient mice,” European Journal of Immunology, vol. 25, no. 9, pp. 2572–2577, 1995. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  65. M. J. Lenardo, “Interleukin-2 programs mouse αβ T lymphocytes for apoptosis,” Nature, vol. 353, no. 6347, pp. 858–861, 1991. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  66. I. Comerford, M. Bunting, K. Fenix et al., “An immune paradox: how can the same chemokine axis regulate both immune tolerance and activation?: CCR6/CCL20: a chemokine axis balancing immunological tolerance and inflammation in autoimmune disease,” BioEssays, vol. 32, no. 12, pp. 1067–1076, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  67. Y. Kochi, Y. Okada, A. Suzuki et al., “A regulatory variant in CCR6 is associated with rheumatoid arthritis susceptibility,” Nature Genetics, vol. 42, no. 6, pp. 515–519, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  68. K. S. Voo, Y. H. Wang, F. R. Santori et al., “Identification of IL-17-producing FOXP3+ regulatory T cells in humans,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 12, pp. 4793–4798, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  69. T. Yamazaki, X. O. Yang, Y. Chung et al., “CCR6 regulates the migration of inflammatory and regulatory T cells,” Journal of Immunology, vol. 181, no. 12, pp. 8391–8401, 2008. View at Scopus
  70. S. Hanabuchi, T. Ito, W. R. Park et al., “Thymic stromal lymphopoietin-activated plasmacytoid dendritic cells induce the generation of FOXP3+ regulatory T cells in human thymus,” Journal of Immunology, vol. 184, no. 6, pp. 2999–3007, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  71. J. Wang and F. Xing, “Human TSLP-educated DCs,” Cellular & Molecular Immunology, vol. 5, no. 2, pp. 99–106, 2008. View at Scopus
  72. N. Watanabe, Y. H. Wang, H. K. Lee et al., “Hassall's corpuscles instruct dendritic cells to induce CD4 +CD25+ regulatory T cells in human thymus,” Nature, vol. 436, no. 7054, pp. 1181–1185, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  73. W. A. Boivin, D. M. Cooper, P. R. Hiebert, and D. J. Granville, “Intracellular versus extracellular granzyme B in immunity and disease: challenging the dogma,” Laboratory Investigation, vol. 89, no. 11, pp. 1195–1220, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  74. L. A. Casciola-Rosen, G. Anhalt, and A. Rosen, “Autoantigens targeted in systemic lupus erythematosus are clustered in two populations of surface structures on apoptotic keratinocytes,” Journal of Experimental Medicine, vol. 179, no. 4, pp. 1317–1330, 1994. View at Scopus
  75. A. Celli, D. S. MacKenzie, D. S. Crumrine et al., “Endoplasmic reticulum Ca2+ depletion activates XBP1 and controls terminal differentiation in keratinocytes and epidermis,” British Journal of Dermatology, vol. 164, no. 1, pp. 16–25, 2011. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  76. M. Hirai, N. Kadowaki, T. Kitawaki et al., “Bortezomib suppresses function and survival of plasmacytoid dendritic cells by targeting intracellular trafficking of Toll-like receptors and endoplasmic reticulum homeostasis,” Blood, vol. 117, no. 2, pp. 500–509, 2011. View at Publisher · View at Google Scholar · View at PubMed
  77. K. Y. Tsang, D. Chan, J. F. Bateman, and K. S. E. Cheah, “In vivo cellular adaptation to ER stress: survival strategies with double-edged consequences,” Journal of Cell Science, vol. 123, no. 13, pp. 2145–2154, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  78. F. Martinon, X. Chen, A. H. Lee, and L. H. Glimcher, “TLR activation of the transcription factor XBP1 regulates innate immune responses in macrophages,” Nature Immunology, vol. 11, no. 5, pp. 411–418, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  79. P. Manga, S. Bis, K. Knoll, B. Perez, and S. J. Orlow, “The unfolded protein response in melanocytes: activation in response to chemical stressors of the endoplasmic reticulum and tyrosinase misfolding,” Pigment Cell and Melanoma Research, vol. 23, no. 5, pp. 627–634, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  80. Y. Liu, M. Adachi, S. Zhao et al., “Preventing oxidative stress: a new role for XBP1,” Cell Death and Differentiation, vol. 16, no. 6, pp. 847–857, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  81. T. G. Grunewald, S. M. Pasedag, and E. Butt, “Cell adhesion and transcriptional activity-defining the role of the novel protooncogene LPP,” Translational Oncology, vol. 2, no. 3, pp. 107–116, 2009. View at Publisher · View at Google Scholar · View at Scopus
  82. D. J. Smyth, V. Plagnol, N. M. Walker et al., “Shared and distinct genetic variants in type 1 diabetes and celiac disease,” New England Journal of Medicine, vol. 359, no. 26, pp. 2767–2777, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  83. M. J. Coenen, G. Trynka, S. Heskamp et al., “Common and different genetic background for rheumatoid arthritis and coeliac disease,” Human Molecular Genetics, vol. 18, no. 21, pp. 4195–4203, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  84. A. Hinks, P. Martin, E. Flynn et al., “Investigation of type 1 diabetes and coeliac disease susceptibility loci for association with juvenile idiopathic arthritis,” Annals of the Rheumatic Diseases, vol. 69, no. 12, pp. 2169–2172, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  85. X. Chen, L. Ren, S. Kim et al., “Determination of the substrate specificity of protein-tyrosine phosphatase TULA-2 and identification of Syk as a TULA-2 substrate,” Journal of Biological Chemistry, vol. 285, no. 41, pp. 31268–31276, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  86. A. Y. Tsygankov, “TULA-family proteins: an odd couple,” Cellular and Molecular Life Sciences, vol. 66, no. 17, pp. 2949–2952, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  87. A. Zhernakova, E. A. Stahl, G. Trynka et al., “Meta-analysis of genome-wide association studies in celiac disease and rheumatoid arthritis identifies fourteen non-HLA shared loci,” PLoS Genetics, vol. 7, no. 2, Article ID e1002004, 2011. View at Publisher · View at Google Scholar · View at PubMed
  88. P. Concannon, S. Onengut-Gumuscu, J. A. Todd et al., “A human type 1 diabetes susceptibility locus maps to chromosome 21q22.3,” Diabetes, vol. 57, no. 10, pp. 2858–2861, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  89. S. F. Grant, H. Q. Qu, J. P. Bradfield et al., “Follow-Up analysis of genome-wide association data identifies novel loci for type 1 diabetes,” Diabetes, vol. 58, no. 1, pp. 290–295, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  90. S. Eyre, A. Hinks, J. Bowes et al., “Overlapping genetic susceptibility variants between three autoimmune disorders: rheumatoid arthritis, type 1 diabetes and coeliac disease,” Arthritis Research & Therapy, vol. 12, no. 5, p. R175, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  91. J. D. Cooper, D. J. Smyth, A. M. Smiles et al., “Meta-analysis of genome-wide association study data identifies additional type 1 diabetes risk loci,” Nature Genetics, vol. 40, no. 12, pp. 1399–1401, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  92. J. Cui, Y. Arita, and J. C. Bystryn, “Characterization of vitiligo antigens,” Pigment Cell Research, vol. 8, no. 1, pp. 53–59, 1995. View at Scopus
  93. Y. H. Song, E. Connor, Y. Li, B. Zorovich, P. Balducci, and N. Maclaren, “The role of tyrosinase in autoimmune vitiligo,” Lancet, vol. 344, no. 8929, pp. 1049–1052, 1994. View at Publisher · View at Google Scholar · View at Scopus
  94. E. Baharav, O. Merimski, Y. Shoenfeld et al., “Tyrosinase as an autoantigen in patients with vitiligo,” Clinical and Experimental Immunology, vol. 105, no. 1, pp. 84–88, 1996. View at Scopus
  95. E. H. Kemp, D. J. Gawkrodger, S. MacNeil, P. F. Watson, and A. P. Weetman, “Detection of tyrosinase autoantibodies in patients with vitiligo using 35S-labeled recombinant human tyrosinase in a radioimmunoassay,” Journal of Investigative Dermatology, vol. 109, no. 1, pp. 69–73, 1997. View at Scopus
  96. H. E. Kemp, E. A. Waterman, D. J. Gawkrodger, P. F. Watson, and A. P. Weetman, “Identification of epitopes on tyrosinase which are recognized by autoantibodies from patients with vitiligo,” Journal of Investigative Dermatology, vol. 113, no. 2, pp. 267–271, 1999. View at Publisher · View at Google Scholar · View at PubMed
  97. E. H. Kemp, E. A. Waterman, D. J. Gawkrodger, P. F. Watson, and A. P. Weetman, “Autoantibodies to tyrosinase-related protein-1 detected in the sera of vitiligo patients using a quantitative radiobinding assay,” British Journal of Dermatology, vol. 139, no. 5, pp. 798–805, 1998. View at Publisher · View at Google Scholar
  98. K. Jimbow, H. Chen, J. S. Park, and P. D. Thomas, “Increased sensitivity of melanocytes to oxidative stress and abnormal expression of tyrosinase-related protein in vitiligo,” British Journal of Dermatology, vol. 144, no. 1, pp. 55–65, 2001. View at Publisher · View at Google Scholar · View at Scopus
  99. Q. Li, Y. Lv, C. Li et al., “Vitiligo autoantigen VIT75 is identified as lamin A in vitiligo by serological proteome analysis based on mass spectrometry,” Journal of Investigative Dermatology, vol. 131, no. 3, pp. 727–734, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  100. E. H. Kemp, D. J. Gawkrodger, P. F. Watson, and A. P. Weetman, “Immunoprecipitation of melanogenic enzyme autoantigens with vitiligo sera: evidence for cross-reactive autoantibodies to tyrosinase and tyrosinase-related protein-2 (TRP-2),” Clinical and Experimental Immunology, vol. 109, no. 3, pp. 495–500, 1997. View at Scopus
  101. E. H. Kemp, D. J. Gawkrodger, P. F. Watson, and A. P. Weetman, “Autoantibodies to human melanocyte-specific protein Pmel17 in the sera of vitiligo patients: a sensitive and quantitative radioimmunoassay (RIA),” Clinical and Experimental Immunology, vol. 114, no. 3, pp. 333–338, 1998. View at Publisher · View at Google Scholar · View at Scopus
  102. E. H. Kemp, E. A. Waterman, D. J. Gawkrodger, P. F. Watson, and A. P. Weetman, “Molecular mapping of epitopes on melanocyte-specific protein Pmel17 which are recognized by autoantibodies in patients with vitiligo,” Clinical and Experimental Immunology, vol. 124, no. 3, pp. 509–515, 2001. View at Publisher · View at Google Scholar · View at Scopus
  103. N. G. Gavalas, R. V. Gottumukkala, D. J. Gawkrodger, P. F. Watson, A. P. Weetman, and E. H. Kemp, “Mapping of melanin-concentrating hormone receptor 1 B cell epitopes predicts two major binding sites for vitiligo patient autoantibodies,” Experimental Dermatology, vol. 18, no. 5, pp. 454–463, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  104. E. H. Kemp, S. Emhemad, S. Akhtar, P. F. Watson, D. J. Gawkrodger, and A. P. Weetman, “Autoantibodies against tyrosine hydroxylase in patients with non-segmental (generalised) vitiligo,” Experimental Dermatology, vol. 20, no. 1, pp. 35–40, 2011. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  105. E. A. Waterman, D. J. Gawkrodger, P. F. Watson, A. P. Weetman, and E. H. Kemp, “Autoantigens in vitiligo identified by the serological selection of a phage-displayed melanocyte cDNA expression library,” Journal of Investigative Dermatology, vol. 130, no. 1, pp. 230–240, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  106. A. Ruiz-Argüelles, G. J. Brito, P. Reyes-Izquierdo, B. Pérez-Romano, and S. Sánchez-Sosa, “Apoptosis of melanocytes in vitiligo results from antibody penetration,” Journal of Autoimmunity, vol. 29, no. 4, pp. 281–286, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  107. B. Palermo, S. Garbelli, S. Mantovani et al., “Qualitative difference between the cytotoxic T lymphocyte responses to melanocyte antigens in melanoma and vitiligo,” European Journal of Immunology, vol. 35, no. 11, pp. 3153–3162, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  108. D. A. Bassiouny and O. Shaker, “Role of interleukin-17 in the pathogenesis of vitiligo,” Clinical and Experimental Dermatology, vol. 36, no. 3, pp. 292–297, 2011. View at Publisher · View at Google Scholar · View at PubMed
  109. K. Oyarbide-Valencia, J. G. van den Boorn, C. J. Denman et al., “Therapeutic implications of autoimmune vitiligo T cells,” Autoimmunity Reviews, vol. 5, no. 7, pp. 486–492, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  110. L. P. Li, J. C. Lampert, X. Chen et al., “Transgenic mice with a diverse human T cell antigen receptor repertoire,” Nature Medicine, vol. 16, no. 9, pp. 1029–1034, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  111. J. Klarquist, C. J. Denman, C. Hernandez et al., “Reduced skin homing by functional Treg in vitiligo,” Pigment Cell and Melanoma Research, vol. 23, no. 2, pp. 276–286, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  112. M. Wittmann, A. Macdonald, and J. Renne, “IL-18 and skin inflammation,” Autoimmunity Reviews, vol. 9, no. 1, pp. 45–48, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus