About this Journal Submit a Manuscript Table of Contents
Dermatology Research and Practice
Volume 2012 (2012), Article ID 710893, 6 pages
http://dx.doi.org/10.1155/2012/710893
Review Article

Effects of Cosmetic Formulations Containing Hydroxyacids on Sun-Exposed Skin: Current Applications and Future Developments

1Office of Cosmetics and Colors, Center for Food Safety and Nutrition, US Food and Drug Administration, 4517 Pinecrest Heights Dr, Annandale, VA 22003, USA
2Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA

Received 6 December 2011; Accepted 20 March 2012

Academic Editor: Bruno A. Bernard

Copyright © 2012 Andrija Kornhauser et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Kornhauser, S. G. Coelho, and V. J. Hearing, “Applications of hydroxy acids: classification, mechanisms, and photoactivity,” Clinical Cosmetic and Investigational Dermatology, vol. 3, pp. 135–142, 2010.
  2. E. J. Van Scott and R. J. Yu, “Control of keratinization with alpha-hydroxy acids and related compounds. I. Topical treatment of ichthyotic disorders,” Archives of Dermatology, vol. 110, no. 4, pp. 586–590, 1974. View at Publisher · View at Google Scholar · View at Scopus
  3. E. M. Jackson, “AHA-type products proliferate in 1993,” Cosmetic Dermatology, vol. 6, pp. 22–26, 1993.
  4. R. J. Yu and E. J. Van Scott, “Alpha-hydroxyacids and carboxylic acids,” Journal of Cosmetic Dermatology, vol. 3, pp. 76–87, 2004.
  5. B. Green, “After 30 years … the future of hydroxyacids,” Journal of Cosmetic Dermatology, vol. 4, pp. 44–45, 2005.
  6. E. F. Bernstein, C. B. Underhill, J. Lakkakorpi et al., “Citric acid increases viable epidermal thickness and glycosaminoglycan content of sun-damaged skin,” Dermatologic Surgery, vol. 23, no. 8, pp. 689–694, 1997. View at Scopus
  7. R. J. Yu and E.J. Van Scott, “Salicylic Acid: not a b-Hydroxy Acid,” Cosmetic Dermatology, vol. 10, article 27, 1997.
  8. D. F. A. Andersen, “Final report on the safety assessment of glycolic acid, ammonium, calcium, potassium, and sodium glycolates, methyl, ethyl, propyl, and butyl glycolates, and lactic acid, ammonium, calcium, potassium, sodium, and tea-lactates, methyl, ethyl, isopropyl, and butyl lactates, and lauryl, myristyl, and cetyl lactates,” International Journal of Toxicology, vol. 17, no. 1, pp. 1–241, 1998. View at Scopus
  9. F.A. Andersen, “Safety assessment of salicylic acid, butyloctyl salicylate, calcium salicylate, C12-15 alkyl salicylate, capryoyl salicylic acid, hexyldodecyl salicylate, isocetyl salicylate, isodecyl salicylate, magnesium salicylate, MEA-salicylate, ethylhexyl salicylate, potassium salicylate, methyl salicylate, myristyl salicylate, sodium salicylate, TEA-salicylate, and tridecyl salicylate,” International Journal of Toxicology, vol. 22, supplement 3, pp. 1–108, 2003.
  10. National Toxicology Program, “Photocarcinogenic study of glycolic acid and salicylic acid in SKH-1 mice,” Tech. Rep. TR 524, NTP, 2007.
  11. Y. P. Lu, Y. R. Lou, J. G. Xie et al., “Tumorigenic effect of some commonly used moisturizing creams when applied topically to UVB-pretreated high-risk mice,” Journal of Investigative Dermatology, vol. 129, no. 2, pp. 468–475, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. F. Staeb, E. Gerber, and L. Kolbe, “Comment on "Tumorigenic effect of some commonly used moisturizing creams when applied topically to UVB-pretreated high-risk mice",” Journal of Investigative Dermatology, vol. 129, no. 2, pp. 515–516, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. R. D. Ellefson, “Comment on "Tumorigenic effect of some commonly used moisturizing creams when applied topically to UVB-pretreated high-risk mice",” Journal of Investigative Dermatology, vol. 129, no. 2, pp. 513–514, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. P. D. Forbes, “Moisturizers, vehicle effects, and photocarcinogenesis,” Journal of Investigative Dermatology, vol. 129, no. 2, pp. 261–262, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. Y. K. Seo, S. J. Kim, Y. C. Boo, J. H. Baek, S. H. Lee, and J. S. Koh, “Effects of p-coumaric acid on erythema and pigmentation of human skin exposed to ultraviolet radiation,” Clinical and Experimental Dermatology, vol. 36, no. 3, pp. 260–266, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. J. S. Im, P. Balakrishnan, D. H. Oh et al., “Evaluation of salicylic acid fatty ester prodrugs for UV protection,” Drug Development and Industrial Pharmacy, vol. 37, no. 7, pp. 841–848, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. E. Merinville, A. J. Byrne, A. V. Rawlings, A. J. Muggleton, and A. C. Laloeuf, “Three clinical studies showing the anti-aging benefits of sodium salicylate in human skin,” Journal of Cosmetic Dermatology, vol. 9, no. 3, pp. 174–184, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. M. Tasic-Kostov, S. Savic, M. Lukic, S. Tamburic, M. Pavlovic, and G. Vuleta, “Lactobionic acid in a natural alkylpolyglucoside-based vehicle: assessing safety and efficacy aspects in comparison to glycolic acid,” Journal of Cosmetic Dermatology, vol. 9, no. 1, pp. 3–10, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. T. B. Fitzpatrick, G. Szabo, M. Seiji, and W. C. QuevedoJr, “Biology of the melanin pigmentary system,” in Dermatology in General Medicine, T. B. Fitzpatrick, A. Z. Eisen, K. Wolff, I. M. Freedberg, and K. F. Austen, Eds., pp. 131–163, McGraw-Hill, New York, NY, USA, 1976.
  20. A. Kornhauser, R. R. Wei, Y. Yamaguchi et al., “The effects of topically applied glycolic acid and salicylic acid on ultraviolet radiation-induced erythema, DNA damage and sunburn cell formation in human skin,” Journal of Dermatological Science, vol. 55, no. 1, pp. 10–17, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. T. Tadokoro, N. Kobayashi, B. Z. Zmudzka et al., “UV-induced DNA damage and melanin content in human skin differing in racial/ethnic origin,” The FASEB Journal, vol. 17, no. 9, pp. 1177–1179, 2003. View at Scopus
  22. T. Tadokoro, Y. Yamaguchi, J. Batzer et al., “Mechanisms of skin tanning in different racial/ethnic groups in response to ultraviolet radiation,” Journal of Investigative Dermatology, vol. 124, no. 6, pp. 1326–1332, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. Y. Yamaguchi, K. Takahashi, B. Z. Zmudzka et al., “Human skin responses to UV radiation: pigment in the upper epidermis protects against DNA damage in the lower epidermis and facilitates apoptosis,” The FASEB Journal, vol. 20, no. 9, pp. 1486–1488, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. Y. Yamaguchi, S. G. Coelho, B. Z. Zmudzka et al., “Cyclobutane pyrimidine dimer formation and p53 production in human skin after repeated UV irradiation,” Experimental Dermatology, vol. 17, no. 11, pp. 916–924, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. Commission Internationale de l'Eclairage, “CIE Standard S 007/E-1998: erythema reference action spectrum and standard erythema dose,” CIE S ;007/E-1998:ISO 17166;1999.
  26. Food and Drug Administration, “Sunscreen drug products for over-the-counter human use; final monograph,” 21 CFR Parts 310, 352, 700, and 740 [Docket No 78N-0038], 1999.
  27. A. Chardon, I. Cretois, and C. Hourseau, “Skin colour typology and suntanning pathways,” International Journal of Cosmetic Science, vol. 13, pp. 191–208, 1991.
  28. J. Ferguson, M. Brown, D. Alert et al., “Collaborative development of a sun protection factor test method: a proposed European Standard: COLIPA Task Force 'Sun Protection Measurement', Europe,” International Journal of Cosmetic Science, vol. 18, no. 5, pp. 203–218, 1996. View at Scopus
  29. G. N. Stamatas, J. Wu, and N. Kollias, “Non-invasive method for quantitative evaluation of exogenous compound deposition on skin,” Journal of Investigative Dermatology, vol. 118, no. 2, pp. 295–302, 2002. View at Publisher · View at Google Scholar · View at Scopus
  30. G. N. Stamatas, B. Z. Zmudzka, N. Kollias, and J. Z. Beer, “Non-invasive measurements of skin pigmentation in situ,” Pigment Cell Research, vol. 17, no. 6, pp. 618–626, 2004. View at Publisher · View at Google Scholar · View at Scopus
  31. G. N. Stamatas, B. Z. Zmudzka, N. Kollias, and J. Z. Beer, “In vivo measurement of skin erythema and pigmentation: new means of implementation of diffuse reflectance spectroscopy with a commercial instrument,” British Journal of Dermatology, vol. 159, no. 3, pp. 683–690, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. W. Choi, Y. Miyamura, R. Wolber et al., “Regulation of human skin pigmentation in situ by repetitive UV exposure: molecular characterization of responses to UVA and/or UVB,” Journal of Investigative Dermatology, vol. 130, no. 6, pp. 1685–1696, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. C. L. Tock, L. R. Turner, A. Altiner, et al., “Transcriptional signatures of full-spectrum and non-UVB-spectrum solar irradiation in human skin,” Pigment Cell & Melanoma Research, vol. 24, pp. 972–974, 2011.
  34. R. Kurata, F. Fujita, K. Oonishi, K. I. Kuriyama, and S. Kawamata, “Inhibition of the CXCR3-mediated pathway suppresses ultraviolet B-induced pigmentation and erythema in skin,” British Journal of Dermatology, vol. 163, no. 3, pp. 593–602, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. A. Clemmensen, K. E. Andersen, O. Clemmensen et al., “Genome-wide expression analysis of human in vivo irritated epidermis: differential profiles induced by sodium lauryl sulfate and nonanoic acid,” Journal of Investigative Dermatology, vol. 130, no. 9, pp. 2201–2210, 2010. View at Publisher · View at Google Scholar · View at Scopus
  36. M. G. Rubin, “The clinical use of alpha hydroxy acids,” Australasian Journal of Dermatology, vol. 35, no. 1, pp. 29–33, 1994. View at Scopus
  37. C. M. Ditre, T. D. Griffin, G. F. Murphy et al., “Effects of α-hydroxy acids on photoaged skin: a pilot clinical, histologic, and ultrastructural study,” Journal of the American Academy of Dermatology, vol. 34, no. 2 I, pp. 187–195, 1996. View at Publisher · View at Google Scholar · View at Scopus
  38. J. T. E. Lim and S. N. Tham, “Glycolic acid peels in the treatment of melasma among Asian women,” Dermatologic Surgery, vol. 23, no. 3, pp. 177–179, 1997. View at Scopus
  39. A. Garcia and J. E. Fulton, “The combination of glycolic acid and hydroquinone or kojic acid for the treatment of melasma and related conditions,” Dermatologic Surgery, vol. 22, no. 5, pp. 443–447, 1996. View at Scopus
  40. K. E. Sharquie, M. M. Al-Tikreety, and S. A. Al-Mashhadani, “Lactic acid as a new therapeutic peeling agent in melasma,” Dermatologic Surgery, vol. 31, no. 2, pp. 149–154, 2005. View at Scopus
  41. C. Cotellessa, K. Peris, M. T. Onorati, M. C. Fargnoli, and S. Chimenti, “The use of chemical peelings in the treatment of different cutaneous hyperpigmentations,” Dermatologic Surgery, vol. 25, no. 6, pp. 450–454, 1999. View at Publisher · View at Google Scholar · View at Scopus
  42. L. S. Kakita and N. J. Lowe, “Azelaic acid and glycolic acid combination therapy for facial hyperpigmentation in darker-skinned patients: a clinical comparison with hydroquinone,” Clinical Therapeutics, vol. 20, no. 5, pp. 960–970, 1998. View at Publisher · View at Google Scholar · View at Scopus
  43. R. L. Burns, P. L. Prevost-Blank, M. A. Lawry, T. B. Lawry, D. T. Faria, and D. P. Fivenson, “Glycolic acid peels for postinflammatory hyperpigmentation in black patients: a comparative study,” Dermatologic Surgery, vol. 23, no. 3, pp. 171–175, 1997. View at Scopus
  44. A. Usuki, A. Ohashi, H. Sato, Y. Ochiai, M. Ichihashi, and Y. Funasaka, “The inhibitory effect of glycolic acid and lactic acid on melanin synthesis in melanoma cells,” Experimental Dermatology, vol. 12, supplement 2, pp. 43–50, 2003. View at Scopus
  45. T. F. Tsai, P. H. Bowman, S. H. Jee, and H. I. Maibach, “Effects of glycolic acid on light-induced skin pigmentation in Asian and Caucasian subjects,” Journal of the American Academy of Dermatology, vol. 43, no. 2 I, pp. 238–243, 2000. View at Scopus
  46. P. E. Grimes, B. A. Green, R. H. Wildnauer, and B. L. Edison, “The Use of Polyhydroxy Acids (PHAs) in photoaged skin,” Cutis, vol. 73, no. 2, pp. 3–13, 2004. View at Scopus
  47. C. Effron, M. E. Briden, and B. A. Green, “Enhancing cosmetic outcomes by combining superficial glycolic acid (α-hydroxy acid) peels with nonablative lasers, intense pulsed light, and trichloroacetic acid peels,” Cutis, vol. 79, no. 1, pp. 4–8, 2007. View at Scopus