About this Journal Submit a Manuscript Table of Contents
Dermatology Research and Practice
Volume 2013 (2013), Article ID 120475, 14 pages
http://dx.doi.org/10.1155/2013/120475
Clinical Study

Evaluation of the Quantitative and Qualitative Alterations in the Fatty Acid Contents of the Sebum of Patients with Inflammatory Acne during Treatment with Systemic Lymecycline and/or Oral Fatty Acid Supplementation

1Service of Dermatology of the Pontifical Catholic University of Campinas, Campinas, SP, Brazil
2KOLderma Clinical Trials Institute, Campinas, SP, Brazil
3Department of Dermatology of the University of Sao Paulo, Sao Paulo, SP, Brazil

Received 2 June 2013; Accepted 7 August 2013

Academic Editor: Lajos Kemeny

Copyright © 2013 Adilson Costa et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. H. Winston and A. R. Shalita, “Acne vulgaris: pathogenesis and treatment,” Pediatric Clinics of North America, vol. 38, no. 4, pp. 889–903, 1991. View at Scopus
  2. K. M. Hassun, “Acne: etiopathogenesis,” Anais Brasileiros de Dermatologia, vol. 75, no. 1, pp. 7–15, 2000. View at Scopus
  3. A. Costa, M. M. A. Alchorne, and M. C. B. Goldschmid, “Fatores etiopatogênicos da acne vulgar,” Anais Brasileiros de Dermatologia, vol. 83, no. 5, pp. 451–459, 2008.
  4. I. Kurokawa, F. W. Danby, Q. Ju et al., “New developments in our understanding of acne pathogenesis and treatment,” Experimental Dermatology, vol. 18, no. 10, pp. 821–832, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. E. Tvrzicka, L. S. Kremmyda, B. Stankova, and A. Zak, “Fatty acids as biocompounds: their role in human metabolism, health and disease—a review. Part 1: classification, dietary sources and biological functions,” Biomedical Papers, vol. 155, no. 2, pp. 117–130, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. C. Prottey, “Essential fatty acids and the skin,” British Journal of Dermatology, vol. 94, no. 5, pp. 579–587, 1976. View at Scopus
  7. A. M. Morello, D. T. Downing, and J. S. Strauss, “Octadecadienoic acids in the skin surface lipids of acne patients and normal subjects,” Journal of Investigative Dermatology, vol. 66, no. 5, pp. 319–323, 1976. View at Scopus
  8. D. T. Downing, M. E. Stewart, P. W. Wertz, and J. S. Strauss, “Essential fatty acids and acne,” Journal of the American Academy of Dermatology, vol. 14, no. 2, pp. 221–225, 1986. View at Scopus
  9. W. J. Cunliffe, D. B. Holland, S. M. Clark, and G. I. Stables, “Comedogenesis: some aetiological, clinical and therapeutic strategies,” Dermatology, vol. 206, no. 1, pp. 11–16, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. A. Costa, M. Alchorne, N. Michalany, and H. Lima, “Acne vulgar: estudo piloto de avaliação do uso oral de ácidos graxos essenciais por meio de analises clínica, digital e histopatológica,” Anais Brasileiros de Dermatologia, vol. 82, pp. 129–134, 2007.
  11. A. Costa, D. Lage, and T. A. Moises, “Acne e dieta: verdade ou mito?” Anais Brasileiros de Dermatologia, vol. 85, no. 3, pp. 346–353, 2010.
  12. A. H. T. Jeremy, D. B. Holland, S. G. Roberts, K. F. Thomson, and W. J. Cunliffe, “Inflammatory events are involved in acne lesion initiation,” Journal of Investigative Dermatology, vol. 121, no. 1, pp. 20–27, 2003. View at Publisher · View at Google Scholar · View at Scopus
  13. P. Berbis, S. Hesse, and Y. Privat, “Acides gras essentiels et peau,” Allergy and Immunology, vol. 22, no. 6, pp. 225–231, 1990.
  14. J. H. Cove, K. T. Holland, and W. J. Cunliffe, “An analysis of sebum excretion rate, bacterial population and the production rate of free fatty acids on human skin,” British Journal of Dermatology, vol. 103, no. 4, pp. 383–386, 1980. View at Scopus
  15. G. M. Pablo and J. E. Fulton Jr., “Sebum: analysis by infrared spectroscopy. II. The suppression of fatty acids by systemically administered antibiotics,” Archives of Dermatology, vol. 111, no. 6, pp. 734–735, 1975. View at Publisher · View at Google Scholar · View at Scopus
  16. H. Gollnick, W. Cunliffe, D. Berson et al., “Management of acne: a report from a global alliance to improve outcomes in acne,” Journal of the American Academy of Dermatology B, vol. 49, supplement 1, pp. S1–S2, 2003. View at Publisher · View at Google Scholar · View at Scopus
  17. M. Ramos-e-Silva, A. Nogueira, C. Reis et al., “Brazilian acne consensus,” Expert Review of Dermatology, vol. 1, no. 1, pp. 151–186, 2006.
  18. D. F. Horrobin, “Fatty acid metabolism in health and disease: the role of delta-6-desaturase,” American Journal of Clinical Nutrition, vol. 57, supplement 5, pp. S732–S737, 1993.
  19. M. Andreassi, P. Forleo, A. Di Lorio, S. Masci, G. Abate, and P. Amerio, “Efficacy of γ-linolenic acid in the treatment of patients with atopic dermatitis,” Journal of International Medical Research, vol. 25, no. 5, pp. 266–274, 1997. View at Scopus
  20. D. T. Downing, “The effect of sebum on epidermal lipid composition,” in Acne and Related Disorders: An International Symposium, Cardiff, 1988.
  21. M. H. A. Rustin, “Dermatology,” Postgraduate Medical Journal, vol. 66, no. 781, pp. 894–905, 1990. View at Publisher · View at Google Scholar
  22. M. G. Rubin, K. Kim, and A. C. Logan, “Acne vulgaris, mental health and omega-3 fatty acids: a report of cases,” Lipids in Health and Disease, vol. 7, article 36, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. D. Thiboutot, H. Gollnick, V. Bettoli et al., “New insights into the management of acne: an update from the Global Alliance to Improve Outcomes in Acne Group,” Journal of the American Academy of Dermatology, vol. 60, supplement 5, pp. S1–S50, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. N. K. M. Nordstrom and W. C. Noble, “Application of computer taxonomic techniques to the study of cutanous propionibacteria and skin-surface lipid,” Archives of Dermatological Research, vol. 278, no. 2, pp. 107–113, 1985. View at Scopus
  25. L. F. U. Uribe, A. M. Cabezas, and M. T. C. Molina, “Glândulas sebáceas y acne,” Derematología, vol. 2, no. 1, pp. 22–24, 1986.
  26. M. E. Stewart, W. A. Steele, and D. T. Downing, “Changes in the relative amounts of endogenous and exogenous fatty acids in sebaceous lipids during early adolescence,” Journal of Investigative Dermatology, vol. 92, no. 3, pp. 371–378, 1989. View at Scopus
  27. A. Kotani and F. Kusu, “HPLC with electrochemical detection for determining the distribution of free fatty acids in skin surface lipids from the human face and scalp,” Archives of Dermatological Research, vol. 294, no. 4, pp. 172–177, 2002. View at Publisher · View at Google Scholar · View at Scopus
  28. M. E. Stewart and D. T. Downing, “Chemistry and function of mammalian sebaceous lipids,” in Skin Lipids: Advances in Lipid Research, P. M. Elias, Ed., vol. 24, pp. 263–302, Academic Press, San Diego, Calif, USA, 1991.
  29. J. A. Cotterill, W. J. Cunliffe, B. Williamson, and L. Bulusu, “Age and sex variation in skin surface lipid composition and sebum excretion rate,” British Journal of Dermatology, vol. 87, no. 4, pp. 333–340, 1972. View at Scopus
  30. K. Ohsawa, T. Watanabe, and R. Matsukawa, “The possible role of squalene and its peroxide of the sebum in the occurrence of sunburn and protection from damage caused by U.V. irradiation,” Journal of Toxicological Sciences, vol. 9, no. 2, pp. 151–159, 1984. View at Scopus
  31. A. Pappas, S. Johsen, J. C. Liu, and M. Eisinger, “Sebum analysis of individuals with and without acne,” Dermatoendocrinol, vol. 1, no. 3, pp. 157–611, 2009.
  32. E. W. Powell and G. W. Beveridge, “Sebum excretion and sebum composition in adolescent men with and without acne vulgaris,” British Journal of Dermatology, vol. 82, no. 3, pp. 243–249, 1970. View at Scopus
  33. S. Patel and W. C. Noble, “Analysis of human skin surface lipid during treatment with anti-androgens,” British Journal of Dermatology, vol. 117, no. 6, pp. 735–740, 1987. View at Scopus
  34. J. S. Strauss, M. E. Stewart, and D. T. Downing, “The effect of 13-cis-retinoic acid on sebaceous glands,” Archives of Dermatology, vol. 123, no. 11, pp. 1538–1541, 1987. View at Scopus
  35. W. J. Cunliffe, J. L. Burton, and S. Shuster, “The effect of local temperature variations on the sebum excretion rate,” British Journal of Dermatology, vol. 83, no. 6, pp. 650–654, 1970. View at Scopus
  36. M. Williams, W. J. Cunliffe, and B. Williamson, “The effect of local temperature changes on sebum excretion rate and forehead surface lipid composition,” British Journal of Dermatology, vol. 88, no. 3, pp. 257–262, 1973. View at Scopus
  37. C. I. Ikaraocha, G. O. L. Taylor, J. I. Anetor, and J. A. Onuegbu, “Pattern of skin surface lipids in some Southern-Western Nigerians with acne vulgaris,” West African Journal of Medicine, vol. 23, no. 1, pp. 65–68, 2004. View at Scopus
  38. R. E. Kellum, “Acne vulgaris. Studies in pathogenesis: relative irritancy of free fatty acids from C2 to C16,” Archives of Dermatology, vol. 97, no. 6, pp. 722–726, 1968. View at Publisher · View at Google Scholar · View at Scopus
  39. M. A. Stillman, H. I. Maibach, and A. R. Shalita, “Relative irritancy of free fatty acids of different chain length,” Contact Dermatitis, vol. 1, no. 2, pp. 65–69, 1975. View at Scopus
  40. J. G. Voss, “Acne vulgaris and free fatty acids. A review and criticism,” Archives of Dermatology, vol. 109, no. 6, pp. 894–898, 1974. View at Publisher · View at Google Scholar · View at Scopus
  41. G. Bergsson, J. Arnfinnsson, S. M. Karlsson, Ó. Steingrímsson, and H. Thormar, “In vitro inactivation of Chlamydia trachomatis by fatty acids and monoglycerides,” Antimicrobial Agents and Chemotherapy, vol. 42, no. 9, pp. 2290–2294, 1998. View at Scopus
  42. C. B. Huang, Y. Alimova, T. M. Myers, and J. L. Ebersole, “Short- and medium-chain fatty acids exhibit antimicrobial activity for oral microorganisms,” Archives of Oral Biology, vol. 56, no. 7, pp. 650–654, 2011. View at Publisher · View at Google Scholar · View at Scopus
  43. T. Nakatsuji, M. C. Kao, L. Zhang, C. C. Zouboulis, R. L. Gallo, and C. M. Huang, “Sebum free fatty acids enhance the innate immune defense of human sebocytes by upregulating β-defensin-2 expression,” Journal of Investigative Dermatology, vol. 130, no. 4, pp. 985–994, 2010. View at Publisher · View at Google Scholar · View at Scopus
  44. A. Ruzin and R. P. Novick, “Equivalence of lauric acid and glycerol monolaurate as inhibitors of signal transduction in Staphylococcus aureus,” Journal of Bacteriology, vol. 182, no. 9, pp. 2668–2671, 2000. View at Publisher · View at Google Scholar · View at Scopus
  45. S. M. Puhvel and R. M. Reisner, “Effect of fatty acids on the growth of Corynebacterium acnes in vitro,” Journal of Investigative Dermatology, vol. 54, no. 1, pp. 48–52, 1970. View at Scopus
  46. J. J. Wille and A. Kydonieus, “Palmitoleic acid isomer (C16:1Δ6) in human skin sebum is effective against gram-positive bacteria,” Skin Pharmacology and Applied Skin Physiology, vol. 16, no. 3, pp. 176–187, 2003. View at Publisher · View at Google Scholar · View at Scopus
  47. A. Hinton Jr. and K. D. Ingram, “Microbicidal activity of tripotassium phosphate and fatty acids toward spoilage and pathogenic bacteria associated with poultry,” Journal of Food Protection, vol. 68, no. 7, pp. 1462–1466, 2005. View at Scopus
  48. M. E. Stewart and D. T. Downing, “Measurement of sebum secretion rates in young children,” Journal of Investigative Dermatology, vol. 84, no. 1, pp. 59–61, 1985. View at Scopus
  49. Y. Saino, J. Eda, and T. Nagoya, “Anaerobic coryneforms isolated from human bone marrow and skin. Chemical, biochemical and serological studies and some of their biological activities,” Japanese Journal of Microbiology, vol. 20, no. 1, pp. 17–25, 1976. View at Scopus
  50. N. Hayashi, K. Togawa, M. Yanagisawa, J. Hosogi, D. Mimura, and Y. Yamamoto, “Effect of sunlight exposure and aging on skin surface lipids and urate,” Experimental Dermatology, vol. 12, supplement 2, pp. 13–17, 2003. View at Scopus
  51. T. Q. Do, S. Moshkani, P. Castillo et al., “Lipids including cholesteryl linoleate and cholesteryl arachidonate contribute to the inherent antibacterial activity of human nasal fluid,” Journal of Immunology, vol. 181, no. 6, pp. 4177–4187, 2008. View at Scopus
  52. C. B. Huang, B. George, and J. L. Ebersole, “Antimicrobial activity of n-6, n-7 and n-9 fatty acids and their esters for oral microorganisms,” Archives of Oral Biology, vol. 55, no. 8, pp. 555–560, 2010. View at Publisher · View at Google Scholar · View at Scopus
  53. Y. Katsuta, T. Iida, S. Inomata, and M. Denda, “Unsaturated fatty acids induce calcium influx into keratinocytes and cause abnormal differentiation of epidermis,” Journal of Investigative Dermatology, vol. 124, no. 5, pp. 1008–1013, 2005. View at Publisher · View at Google Scholar · View at Scopus
  54. K. Moriyama, S. Yokoo, H. Terashi, and T. Komori, “Cellular fatty acid composition of stratified squamous epithelia after transplantation of ex vivo produced oral mucosa equivalent,” Kobe Journal of Medical Sciences, vol. 56, no. 6, pp. E253–E262, 2010. View at Scopus
  55. J. W. Fluhr, J. Kao, M. Jain, S. K. Ahn, K. R. Feingold, and P. M. Elias, “Generation of free fatty acids from phospholipids regulates stratum corneum acidification and integrity,” Journal of Investigative Dermatology, vol. 117, no. 1, pp. 44–51, 2001. View at Publisher · View at Google Scholar · View at Scopus
  56. M. Y. Sheu, A. J. Fowler, J. Kao et al., “Topical peroxisome proliferator activated receptor-α activators reduce inflammation in irritant and allergic contact dermatitis models,” Journal of Investigative Dermatology, vol. 118, no. 1, pp. 94–101, 2002. View at Publisher · View at Google Scholar · View at Scopus
  57. G. Siegenthaler, R. Hotz, D. Chatellard-Gruaz, L. Didierjean, U. Hellman, and J. H. Saurat, “Purification and characterization of the human epidermal fatty acid-binding protein: localization during epidermal cell differentiation in vivo and in vitro,” Biochemical Journal, vol. 302, no. 2, pp. 363–371, 1994. View at Scopus
  58. G. Slegenthaler, R. Hotz, D. Chatellard-Gruaz, S. Jaconi, and J. H. Saurat, “Characterization and expression of a novel human fatty acid-binding protein: the epidermal type (E-FABP),” Biochemical and Biophysical Research Communications, vol. 190, no. 2, pp. 482–487, 1993. View at Publisher · View at Google Scholar · View at Scopus
  59. H. C. Chen, R. Mendelsohn, M. E. Rerek, and D. J. Moore, “Effect of cholesterol on miscibility and phase behavior in binary mixtures with synthetic ceramide 2 and octadecanoic acid. Infrared studies,” Biochimica et Biophysica Acta, vol. 1512, no. 2, pp. 345–356, 2001. View at Publisher · View at Google Scholar · View at Scopus
  60. C. H. Chen, Y. Wang, T. Nakatsuji et al., “An innate bactericidal oleic acid effective against skin infection of methicillin-resistant Staphylococcus aureus: a therapy concordant with evolutionary medicine,” Journal of Microbiology and Biotechnology, vol. 21, no. 4, pp. 391–399, 2011. View at Publisher · View at Google Scholar · View at Scopus
  61. E. M. Gribbon, W. J. Cunliffe, and K. T. Holland, “Interaction of Propionibacterium acnes with skin lipids in vitro,” Journal of General Microbiology, vol. 139, no. 8, pp. 1745–1751, 1993. View at Scopus
  62. D. Yang, D. Pornpattananangkul, T. Nakatsuji et al., “The antimicrobial activity of liposomal lauric acids against Propionibacterium acnes,” Biomaterials, vol. 30, no. 30, pp. 6035–6040, 2009. View at Publisher · View at Google Scholar · View at Scopus
  63. A. Pupe, R. Moison, P. de Haes et al., “Eicosapentaenoic acid, a n-3 polyunsaturated fatty acid differentially modulates TNF-α, IL-1α, IL-6 and PGE2 expression in UVB-irradiated human keratinocytes,” Journal of Investigative Dermatology, vol. 118, no. 4, pp. 692–698, 2002. View at Publisher · View at Google Scholar · View at Scopus
  64. A. Storey, F. McArdle, P. S. Friedmann, M. J. Jackson, and L. E. Rhodes, “Eicosapentaenoic acid and docosahexaenoic acid reduce UVB- and TNF-α-induced IL-8 secretion in keratinocytes and UVB-induced IL-8 in fibroblasts,” Journal of Investigative Dermatology, vol. 124, no. 1, pp. 248–255, 2005. View at Publisher · View at Google Scholar · View at Scopus
  65. B. Yu, C. Y. Dong, P. T. C. So, D. Blankschtein, and R. Langer, “In vitro visualization and quantification of oleic acid induced changes in transdermal transport using two-photon fluorescence microscopy,” Journal of Investigative Dermatology, vol. 117, no. 1, pp. 16–25, 2001. View at Publisher · View at Google Scholar · View at Scopus
  66. S. J. Jiang and X. J. Zhou, “Examination of the mechanism of oleic acid-induced percutaneous penetration enhancement: an ultrastructural study,” Biological and Pharmaceutical Bulletin, vol. 26, no. 1, pp. 66–68, 2003. View at Publisher · View at Google Scholar · View at Scopus
  67. S. Ben-Shabat, N. Baruch, and A. C. Sintov, “Conjugates of unsaturated fatty acids with propylene glycol as potentially less-irritant skin penetration enhancers,” Drug Development and Industrial Pharmacy, vol. 33, no. 11, pp. 1169–1175, 2007. View at Publisher · View at Google Scholar · View at Scopus
  68. M. J. Kim, H. J. Doh, M. K. Choi et al., “Skin permeation enhancement of diclofenac by fatty acids,” Drug Delivery, vol. 15, no. 6, pp. 373–379, 2008. View at Publisher · View at Google Scholar · View at Scopus
  69. Y. Sun, W. Lo, S. J. Lin, S. H. Jee, and C. Y. Dong, “Multiphoton polarization and generalized polarization microscopy reveal oleic-acid-induced structural changes in intercellular lipid layers of the skin,” Optics Letters, vol. 29, no. 17, pp. 2013–2015, 2004. View at Publisher · View at Google Scholar · View at Scopus
  70. M. I. Hoopes, M. G. Noro, M. L. Longo, and R. Faller, “Bilayer structure and lipid dynamics in a model stratum corneum with oleic acid,” Journal of Physical Chemistry B, vol. 115, no. 12, pp. 3164–3171, 2011. View at Publisher · View at Google Scholar · View at Scopus
  71. A. Conti, J. Rogers, P. Verdejo, C. R. Harding, and A. V. Rawlings, “Seasonal influences on stratum corneum ceramide 1 fatty acids and the influence of topical essential fatty acids,” International Journal of Cosmetic Science, vol. 18, no. 1, pp. 1–12, 1996. View at Scopus
  72. K. Motoyoshi, “Enhanced comedo formation in rabbit ear skin by squalene and oleic acid peroxides,” British Journal of Dermatology, vol. 109, no. 2, pp. 191–198, 1983. View at Scopus
  73. E. H. Choi, S. K. Ahn, and S. H. Lee, “The changes of stratum corneum interstices and calcium distribution of follicular epithelium of experimentally induced comedones (EIC) by oleic acid,” Experimental Dermatology, vol. 6, no. 1, pp. 29–35, 1997. View at Publisher · View at Google Scholar · View at Scopus
  74. Y. Katsuta, T. Iida, K. Hasegawa, S. Inomata, and M. Denda, “Function of oleic acid on epidermal barrier and calcium influx into keratinocytes is associated with N-methyl d-aspartate-type glutamate receptors,” British Journal of Dermatology, vol. 160, no. 1, pp. 69–74, 2009. View at Publisher · View at Google Scholar · View at Scopus
  75. A. Berton, V. Rigot, E. Huet et al., “Involvement of fibronectin type II repeats in the efficient inhibition of gelatinases A and B by long-chain unsaturated fatty acids,” Journal of Biological Chemistry, vol. 276, no. 23, pp. 20458–20465, 2001. View at Publisher · View at Google Scholar · View at Scopus
  76. E. Huet, J. H. Cauchard, A. Berton et al., “Inhibition of plasmin-mediated prostromelysin-1 activation by interaction of long chain unsaturated fatty acids with kringle 5,” Biochemical Pharmacology, vol. 67, no. 4, pp. 643–654, 2004. View at Publisher · View at Google Scholar · View at Scopus
  77. J. H. Cauchard, A. Berton, G. Godeau, W. Hornebeck, and G. Bellon, “Activation of latent transforming growth factor beta 1 and inhibition of matrix metalloprotease activity by a thrombospondin-like tripeptide linked to elaidic acid,” Biochemical Pharmacology, vol. 67, no. 11, pp. 2013–2022, 2004. View at Publisher · View at Google Scholar · View at Scopus
  78. J. L. Burton, “Dietary fatty acids and inflammatory skin disease,” Lancet, vol. 1, no. 8628, pp. 27–31, 1989. View at Scopus
  79. S. Wright, “Essential fatty acids and the skin,” Prostaglandins Leukotrienes and Essential Fatty Acids, vol. 38, no. 4, pp. 229–236, 1989. View at Publisher · View at Google Scholar · View at Scopus
  80. S. Monpoint, B. Guillot, F. Truchetet, E. Grosshans, and J. J. Guilhou, “Essential fatty acids in dermatology,” Annales de Dermatologie et de Venereologie, vol. 119, no. 3, pp. 233–239, 1992. View at Scopus
  81. K. Perisho, P. W. Wertz, K. C. Madison, M. E. Stewart, and D. T. Downing, “Fatty acids of acylceramides from comedones and from the skin surface of acne patients and control subjects,” Journal of Investigative Dermatology, vol. 90, no. 3, pp. 350–353, 1988. View at Scopus
  82. V. M. Sardesai, “The essential fatty acids,” Nutrition in Clinical Practice, vol. 7, no. 4, pp. 179–186, 1992.
  83. P. M. Elias, B. E. Brown, and V. A. Ziboh, “The permeability barrier in essential fatty acid deficiency: evidence for a direct role for linoleic acid in barrier function,” Journal of Investigative Dermatology, vol. 74, no. 4, pp. 230–233, 1980. View at Publisher · View at Google Scholar · View at Scopus
  84. W. Chen, C. C. Zouboulis, and C. E. Orfanos, “The 5α-Reductase system and its inhibitors. Recent development and its perspective in treating androgen-dependent skin disorders,” Dermatology, vol. 193, no. 3, pp. 177–184, 1996. View at Scopus
  85. R. L. Rosenfield, A. Kentsis, D. Deplewski, and N. Ciletti, “Rat preputial sebocyte differentiation involves peroxisome proliferator-activated receptors,” Journal of Investigative Dermatology, vol. 112, no. 2, pp. 226–232, 1999. View at Publisher · View at Google Scholar · View at Scopus
  86. C. C. Zouboulis and M. Böhm, “Neuroendocrine regulation of sebocytes—a pathogenetic link between stress and acne,” Experimental Dermatology, vol. 13, no. 4, pp. 31–35, 2004. View at Scopus
  87. H. L. Yu and N. Salem Jr., “Whole body distribution of deuterated linoleic and α-linolenic acids and their metabolites in the rat,” Journal of Lipid Research, vol. 48, no. 12, pp. 2709–2724, 2007. View at Publisher · View at Google Scholar · View at Scopus
  88. C. Grattan, J. L. Burton, M. Manku, C. Stewart, and D. F. Horrobin, “Essential-fatty-acid metabolites in plasma phospholipids in patients with ichthyosis vulgaris, acne vulgaris and psoriasis,” Clinical and Experimental Dermatology, vol. 15, no. 3, pp. 174–176, 1990. View at Publisher · View at Google Scholar · View at Scopus
  89. S. Chung, S. Kong, K. Seong, and Y. Cho, “γ-linolenic acid in borage oil reverses epidermal hyperproliferation in guinea pigs,” Journal of Nutrition, vol. 132, no. 10, pp. 3090–3097, 2002. View at Scopus
  90. M. M. McCusker and J. M. Grant-Kels, “Healing fats of the skin: the structural and immunologic roles of the Ω-6 and Ω-3 fatty acids,” Clinics in Dermatology, vol. 28, no. 4, pp. 440–451, 2010. View at Publisher · View at Google Scholar · View at Scopus
  91. J. W. Hopewell, M. E. C. Robbins, G. J. M. J. Van den Aardweg et al., “The modulation of radiation-induced damage to pig skin by essential fatty acids,” British Journal of Cancer, vol. 68, no. 1, pp. 1–7, 1993. View at Scopus
  92. D. Wu, M. Meydani, L. S. Leka, Z. Nightingale, G. J. Handelman, and J. B. Blumberg, “Effect of dietary supplementation with black currant seed oil or the immune response of healthy elderly subjects,” American Journal of Clinical Nutrition, vol. 70, no. 4, pp. 536–543, 1999. View at Scopus
  93. V. A. Ziboh, C. C. Miller, and Y. Cho, “Metabolism of polyunsaturated fatty acids by skin epidermal enzymes: generation of antiinflammatory and antiproliferative metabolites,” American Journal of Clinical Nutrition, vol. 71, supplement 1, pp. 361S–366S, 2000. View at Scopus
  94. Y. C. Chen, W. T. Chiu, and M. S. Wu, “Therapeutic effect of topical gamma-linolenic acid on refractory uremic pruritus,” American Journal of Kidney Diseases, vol. 48, no. 1, pp. 69–76, 2006. View at Publisher · View at Google Scholar · View at Scopus
  95. Z. Fu and A. J. Sinclair, “Increased α-linolenic acid intake increases tissue α-linolenic acid content and apparent oxidation with little effect on tissue docosahexaenoic acid in the guinea pig,” Lipids, vol. 35, no. 4, pp. 395–400, 2000. View at Scopus
  96. K. S. Bjerve, S. Fischer, F. Wammer, and T. Egeland, “α-Linolenic acid and long-chain ω-3 fatty acid supplementation in three patients with ω-3 fatty acid deficiency: effect on lymphocyte function, plasma and red cell lipids, and prostanoid formation,” American Journal of Clinical Nutrition, vol. 49, no. 2, pp. 290–300, 1989. View at Scopus
  97. C. C. Miller, W. Tang, V. A. Ziboh, and M. P. Fletcher, “Dietary supplementation with ethyl ester concentrates of fish oil (n-3) and borage oil (n-6) polyunsaturated fatty acids induces epidermal generation of local putative anti-inflammatory metabolites,” Journal of Investigative Dermatology, vol. 96, no. 1, pp. 98–103, 1991. View at Scopus
  98. R. W. Lacey and V. L. Lord, “Sensitivity of staphylococci to fatty acids: novel inactivation of linolenic acid by serum,” Journal of Medical Microbiology, vol. 14, no. 1, pp. 41–49, 1981. View at Scopus
  99. K. S. Bjerve, L. Thoresen, I. L. Mostad, and K. Alme, “Alpha-linolenic acid deficiency in man: effect of essential fatty acids on fatty acid composition,” Advances in Prostaglandin, Thromboxane, and Leukotriene Research, vol. 17, pp. 862–865, 1987. View at Scopus
  100. C. H. Yen, Y. S. Dai, Y. H. Yang, L. C. Wang, J. H. Lee, and B. L. Chiang, “Linoleic acid metabolite levels and transepidermal water loss in children with atopic dermatitis,” Annals of Allergy, Asthma and Immunology, vol. 100, no. 1, pp. 66–73, 2008. View at Scopus
  101. E. Fehling, D. J. Murphy, and K. D. Mukherjee, “Biosynthesis of triacylglycerols containing very long chain monounsaturated acyl moieties in developing seeds,” Plant Physiology, vol. 94, no. 2, pp. 492–498, 1990. View at Scopus
  102. J. Alezones, M. Ávila, A. Chassaigne, and V. Barrientos, “Fatty acids profile characterization of white maize hybrids grown in venezuela,” Archivos Latinoamericanos de Nutricion, vol. 60, no. 4, pp. 397–404, 2010. View at Scopus
  103. N. B. Cater and M. A. Denke, “Behenic acid is a cholesterol-raising saturated fatty acid in humans,” American Journal of Clinical Nutrition, vol. 73, no. 1, pp. 41–44, 2001. View at Scopus
  104. R. Westerberg, J. E. Månsson, V. Golozoubova et al., “ELOVL3 is an important component for early onset of lipid recruitment in brown adipose tissue,” Journal of Biological Chemistry, vol. 281, no. 8, pp. 4958–4968, 2006. View at Publisher · View at Google Scholar · View at Scopus
  105. A. Schroeter, M. A. Kiselev, T. Hauß, S. Dante, and R. H. H. Neubert, “Evidence of free fatty acid interdigitation in stratum corneum model membranes based on ceramide [AP] by deuterium labelling,” Biochimica et Biophysica Acta, vol. 1788, no. 10, pp. 2194–2203, 2009. View at Publisher · View at Google Scholar · View at Scopus
  106. A. M. Hall, B. M. Wiczer, T. Herrmann, W. Stremmel, and D. A. Bernlohr, “Enzymatic properties of purified murine fatty acid transport protein 4 and analysis of Acyl-CoA synthetase activities in tissues from FATP4 null mice,” Journal of Biological Chemistry, vol. 280, no. 12, pp. 11948–11954, 2005. View at Publisher · View at Google Scholar · View at Scopus
  107. B. Janůšová, J. Zbytovská, P. Lorenc et al., “Effect of ceramide acyl chain length on skin permeability and thermotropic phase behavior of model stratum corneum lipid membranes,” Biochimica et Biophysica Acta, vol. 1811, no. 3, pp. 129–137, 2011. View at Publisher · View at Google Scholar
  108. L. Norlén, I. Nicander, A. Lundsjö, T. Cronholm, and B. Forslind, “A new HPLC-based method for the quantitative analysis of inner stratum corneum lipids with special reference to the free fatty acid fraction,” Archives of Dermatological Research, vol. 290, no. 9, pp. 508–516, 1998. View at Publisher · View at Google Scholar · View at Scopus
  109. J. Rogers, C. Harding, A. Mayo, J. Banks, and A. Rawlings, “Stratum corneum lipids: the effect of ageing and the seasons,” Archives of Dermatological Research, vol. 288, no. 12, pp. 765–770, 1996. View at Publisher · View at Google Scholar · View at Scopus