About this Journal Submit a Manuscript Table of Contents
Diagnostic and Therapeutic Endoscopy
Volume 2012 (2012), Article ID 278045, 6 pages
http://dx.doi.org/10.1155/2012/278045
Clinical Study

The Learning Curve of Gastric Intestinal Metaplasia Interpretation on the Images Obtained by Probe-Based Confocal Laser Endomicroscopy

1Division of Gastroenterology, Department of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
2Department of Pathology, Chulalongkorn University, Bangkok 10330, Thailand

Received 24 August 2012; Accepted 9 November 2012

Academic Editor: Helmut Neumann

Copyright © 2012 Rapat Pittayanon et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Ferlay, H. R. Shin, F. Bray, D. Forman, C. Mathers, and D. M. Parkin, “Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008,” International Journal of Cancer, vol. 127, no. 12, pp. 2893–2917, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. J. G. Fox and T. C. Wang, “Inflammation, atrophy, and gastric cancer,” Journal of Clinical Investigation, vol. 117, no. 1, pp. 60–69, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. P. Correa, M. B. Piazuelo, and K. T. Wilson, “Pathology of gastric intestinal metaplasia: clinical implications,” The American Journal of Gastroenterology, vol. 105, no. 3, pp. 493–498, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. R. Pittayanon, R. Rerknimitr, W. Ridtitid, et al., “Magnified intelligence chromoendoscopy (FICE) plus probe-based confocal laser endomicroscopy (pCLE) for gastric intestinal metaplasia (GIM) diagnosis: a pilot feasibility trial,” Gastrointestinal Endoscopy, vol. 73, no. 4, Article ID AB164, 2011. View at Publisher · View at Google Scholar
  5. T. Kuiper, R. Kiesslich, C. Ponsioen, P. Fockens, and E. Dekker, “The learning curve, accuracy, and interobserver agreement of endoscope-based confocal laser endomicroscopy for the differentiation of colorectal lesions,” Gastrointestinal Endoscopy, vol. 75, no. 6, pp. 1211–1217, 2012. View at Publisher · View at Google Scholar
  6. A. M. Buchner, V. Gomez, M. G. Heckman et al., “The learning curve of in vivo probe-based confocal laser endomicroscopy for prediction of colorectal neoplasia,” Gastrointestinal Endoscopy, vol. 73, no. 3, pp. 556–560, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. H. Neumann, M. Vieth, R. Atreya, M. F. Neurath, and J. Mudter, “Prospective evaluation of the learning curve of confocal laser endomicroscopy in patients with IBD,” Histology and Histopathology, vol. 26, no. 7, pp. 867–872, 2011. View at Scopus
  8. S. Gaddam, S. C. Mathur, M. Singh, et al., “Novel probe-based confocal laser endomicroscopy criteria and interobserver agreement for the detection of dysplasia in Barrett's esophagus,” The American Journal of Gastroenterology, vol. 106, no. 11, pp. 1961–1969, 2011.
  9. R. Kiesslich, J. Burg, M. Vieth et al., “Confocal laser endoscopy for diagnosing intraepithelial neoplasias and colorectal cancer in vivo,” Gastroenterology, vol. 127, no. 3, pp. 706–713, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. A. Meining, “Confocal endomicroscopy,” Gastrointestinal Endoscopy Clinics of North America, vol. 19, no. 4, pp. 629–635, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. R. Kiesslich and M. I. Canto, “Confocal laser endomicroscopy,” Gastrointestinal Endoscopy Clinics of North America, vol. 19, no. 2, pp. 261–272, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. A. L. Polglase, W. J. McLaren, S. A. Skinner, R. Kiesslich, M. F. Neurath, and P. M. Delaney, “A fluorescence confocal endomicroscope for in vivo microscopy of the upper- and the lower-GI tract,” Gastrointestinal Endoscopy, vol. 62, no. 5, pp. 686–695, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. A. Hoffman, M. Goetz, M. Vieth, P. R. Galle, M. F. Neurath, and R. Klesslich, “Confocal laser endomicroscopy: technical status and current indications,” Endoscopy, vol. 38, no. 12, pp. 1275–1283, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. N. Q. Nguyen and R. W. L. Leong, “Current application of confocal endomicroscopy in gastrointestinal disorders,” Journal of Gastroenterology and Hepatology, vol. 23, no. 10, pp. 1483–1491, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. X. J. Xie, C. Q. Li, X. L. Zuo et al., “Differentiation of colonic polyps by confocal laser endomicroscopy,” Endoscopy, vol. 43, no. 2, pp. 87–93, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. W. B. Li, X. L. Zuo, C. Q. Li et al., “Diagnostic value of confocal laser endomicroscopy for gastric superficial cancerous lesions,” Gut, vol. 60, no. 3, pp. 299–306, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. K. B. Dunbar, P. Okolo III, E. Montgomery, and M. I. Canto, “Confocal laser endomicroscopy in Barrett's esophagus and endoscopically inapparent Barrett's neoplasia: a prospective, randomized, double-blind, controlled, crossover trial,” Gastrointestinal Endoscopy, vol. 70, no. 4, pp. 645–654, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. A. Meining, Y. K. Chen, D. Pleskow et al., “Direct visualization of indeterminate pancreaticobiliary strictures with probe-based confocal laser endomicroscopy: a multicenter experience,” Gastrointestinal Endoscopy, vol. 74, no. 5, pp. 961–968, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. K. B. Dunbar and M. I. Canto, “Confocal laser endomicroscopy in Barrett's esophagus and endoscopically inapparent Barrett's neoplasia: a prospective, randomized, double-blind, controlled, crossover trial,” Gastrointestinal Endoscopy, vol. 72, no. 3, article 668, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. J. Humphris, D. Swartz, B. J. Egan, and R. W. Leong, “Status of confocal laser endomicroscopy in gastrointestinal disease,” Tropical Gastroenterology, vol. 33, no. 1, pp. 9–20, 2012.
  21. E. Coron, J. F. Mosnier, A. Ahluwalia, et al., “Colonic mucosal biopsies obtained during confocal endomicroscopy are pre-stained with fluorescein in vivo and are suitable for histologic evaluation,” Endoscopy, vol. 44, no. 2, pp. 148–153, 2012. View at Publisher · View at Google Scholar
  22. Y. T. Guo, Y. Q. Li, T. Yu et al., “Diagnosis of gastric intestinal metaplasia with confocal laser endomicroscopy in vivo: a prospective study,” Endoscopy, vol. 40, no. 7, pp. 547–553, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. L. G. Lim, K. G. Yeoh, M. Salto-Tellez et al., “Experienced versus inexperienced confocal endoscopists in the diagnosis of gastric adenocarcinoma and intestinal metaplasia on confocal images,” Gastrointestinal Endoscopy, vol. 73, no. 6, pp. 1141–1147, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. T. Kuiper, F. J. van den Broek, S. van Eeden, P. Fockens, and E. Dekker, “Feasibility and accuracy of confocal endomicroscopy in comparison with narrow-band imaging and chromoendoscopy for the differentiation of colorectal lesions,” The American Journal of Gastroenterology, vol. 107, no. 4, pp. 543–550, 2012. View at Publisher · View at Google Scholar
  25. V. Gómez, A. M. Buchner, E. Dekker et al., “Interobserver agreement and accuracy among international experts with probe-based confocal laser endomicroscopy in predicting colorectal neoplasia,” Endoscopy, vol. 42, no. 4, pp. 286–291, 2010. View at Publisher · View at Google Scholar · View at Scopus