About this Journal Submit a Manuscript Table of Contents
Diagnostic and Therapeutic Endoscopy
Volume 2012 (2012), Article ID 418037, 9 pages
http://dx.doi.org/10.1155/2012/418037
Review Article

A Review of Machine-Vision-Based Analysis of Wireless Capsule Endoscopy Video

Department of Computer Science and Engineering, School of Engineering, University of Bridgeport, Bridgeport, CT 06604, USA

Received 25 July 2012; Revised 20 September 2012; Accepted 18 October 2012

Academic Editor: Klaus Mönkemüller

Copyright © 2012 Yingju Chen and Jeongkyu Lee. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. Ciuti, A. Menciassi, and P. Dario, “Capsule endoscopy: from current achievements to open challenges,” IEEE Reviews in Biomedical Engineering, vol. 4, pp. 59–72, 2011.
  2. M. Tuceryan and A. K. Jain, Texture Analysis, Handbook of Pattern Recognition & Computer Vision, World Scientific Publishing, River Edge, NJ, USA, 2nd edition, 1999.
  3. Y. J. Chen, W. Yasen, J. Lee, D. Lee, and Y. Kim, “Developing assessment system for wireless capsule endoscopy videos based on event detection,” in Proceedings of the Medical Imaging: Computer-Aided Diagnosis, vol. 7260 of Proceedings of SPIE, Orlando, Fla, USA, February 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. Y. Chen and J. Lee, “Ulcer detection in wireless capsule endoscopy videos,” in Proceedings of the ACM Multimedia, Nara, Japan, October 2012.
  5. M. Tkalcic and J. F. Tasic, “Colour spaces: perceptual, historical and applicational background,” in Proceedings of the The IEEE Region 8 EUROCON: Computer as a Tool, vol. 1, pp. 304–308, 2003.
  6. P. Y. Lau and P. L. Correia, “Detection of bleeding patterns in wce video using multiple features,” in Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 5601–5604, 2007.
  7. J. Liu and X. Yuan, “Obscure bleeding detection in endoscopy images using support vector machines,” Optimization and Engineering, vol. 10, no. 2, pp. 289–299, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. B. Giritharan, Y. Xiaohui, L. Jianguo, B. Buckles, O. JungHwan, and T. S. Jiang, “Bleeding detection from capsule endoscopy videos,” in Proceedings of the 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS '08), pp. 4780–4783, August 2008. View at Scopus
  9. B. Penna, T. Tilloy, M. Grangettoz, E. Magli, and G. Olmo, “A technique for blood detection in wireless capsule endoscopy images,” in Proceedings of the 17th European Signal Processing Conference (EUSIPCO '09), pp. 1864–1868, Glasgow, UK, 2009.
  10. A. Karargyris and N. Bourbakis, “A methodology for detecting blood-based abnormalities in wireless capsule endoscopy videos,” in Proceedings of the 8th IEEE International Conference on BioInformatics and BioEngineering (BIBE '08), pp. 1–6, October 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. B. Li and M. Q. H. Meng, “Computer-aided detection of bleeding regions for capsule endoscopy images,” IEEE Transactions on Biomedical Engineering, vol. 56, no. 4, pp. 1032–1039, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. B. Li and M. Q. H. Meng, “Computer-based detection of bleeding and ulcer in wireless capsule endoscopy images by chromaticity moments,” Computers in Biology and Medicine, vol. 39, no. 2, pp. 141–147, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. B. Li and M. Q. H. Meng, “Ulcer recognition in capsule endoscopy images by texture features,” in Proceedings of the 7th World Congress on Intelligent Control and Automation, (WCICA '08), pp. 234–239, June 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. B. Li and M. Q. H. Meng, “Texture analysis for ulcer detection in capsule endoscopy images,” Image and Vision Computing, vol. 27, no. 9, pp. 1336–1342, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. A. Karargyris and N. Bourbakis, “Identification of ulcers in wireless capsule endoscopy videos,” in Proceedings of the IEEE International Symposium on Biomedical Imaging: From Nano to Macro (ISBI '09), pp. 554–557, July 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. D. K. Iakovidis, D. E. Maroulis, S. A. Karkanis, and A. Brokos, “A comparative study of texture features for the discrimination of gastric polyps in endoscopic video,” in Proceedings of the 18th IEEE Symposium on Computer-Based Medical Systems, pp. 575–580, June 2005. View at Scopus
  17. A. Karargyris and N. Bourbakis, “Identification of polyps in wireless capsule endoscopy videos using Log Gabor filters,” in Proceedings of the IEEE/NIH Life Science Systems and Applications Workshop (LiSSA '09), pp. 143–147, April 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. B. Li, M. Q. H. Meng, and L. Xu, “A comparative study of shape features for polyp detection in wireless capsule endoscopy images,” in Proceedings of the 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC '09), pp. 3731–3734, September 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. D. J. C. Barbosa, J. Ramos, and C. S. Lima, “Detection of small bowel tumors in capsule endoscopy frames using texture analysis based on the discrete wavelet transform,” in Proceedings of the 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS '08), pp. 3012–3015, August 2008. View at Scopus
  20. D. J. C. Barbosa, J. Ramos, J. H. Correia, and C. S. Lima, “Automatic detection of small bowel tumors in capsule endoscopy based on color curvelet covariance statistical texture descriptors,” in Proceedings of the 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC '09), pp. 6683–6686, September 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. S. A. Karkanis, G. D. Magoulas, D. K. Iakovidis, D. E. Maroulis, and N. Theofanous, “Tumor recognition in endoscopic video images using artificial neural network architectures,” in Proceedings of the 26th EUROMICRO Conference, pp. 423–429, 2000.
  22. B. Li and M. Q. H. Meng, “Small bowel tumor detection for wireless capsule endoscopy images using textural features and support vector machine,” in Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS '09), pp. 498–503, October 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. J. V. D. W. T. Gevers and H. Stokman, Color Feature Detection, Color Image Processing: Methods and Applications, CRC/Taylor & Francis, Boca Raton, Fla, USA, 2007.
  24. T. Ojala, M. Pietikäinen, and T. Mäenpää, “Multiresolution gray-scale and rotation invariant texture classification with local binary patterns,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 24, no. 7, pp. 971–987, 2002. View at Publisher · View at Google Scholar · View at Scopus
  25. R. M. Haralick, “Statistical and structural approaches to texture,” Proceedings of the IEEE, vol. 67, no. 5, pp. 786–804, 1979.
  26. R. M. Haralick, K. Shanmugam, and I. Dinstein, “Textural features for image classification,” IEEE Transactions on Systems, Man and Cybernetics, vol. 3, no. 6, pp. 610–621, 1973. View at Scopus
  27. J. G. Daugman, “Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters.,” Journal of the Optical Society of America A, vol. 2, no. 7, pp. 1160–1169, 1985. View at Scopus
  28. D. J. Field, “Relations between the statistics of natural images and the response properties of cortical cells.,” Journal of the Optical Society of America A, vol. 4, no. 12, pp. 2379–2394, 1987. View at Scopus
  29. I. Koprinska and S. Carrato, “Temporal video segmentation: a survey,” Signal Processing: Image Communication, vol. 16, no. 5, pp. 477–500, 2001. View at Publisher · View at Google Scholar · View at Scopus
  30. H. Vu, T. Echigo, R. Sagawa et al., “Detection of contractions in adaptive transit time of the small bowel from wireless capsule endoscopy videos,” Computers in Biology and Medicine, vol. 39, no. 1, pp. 16–26, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. D. K. Iakovidis, S. Tsevas, and A. Polydorou, “Reduction of capsule endoscopy reading times by unsupervised image mining,” Computerized Medical Imaging and Graphics, vol. 34, no. 6, pp. 471–478, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. M. Mackiewicz, J. Berens, and M. Fisher, “Wireless capsule endoscopy color video segmentation,” IEEE Transactions on Medical Imaging, vol. 27, no. 12, pp. 1769–1781, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. A. W. M. Smeulders, M. Worring, S. Santini, A. Gupta, and R. Jain, “Content-based image retrieval at the end of the early years,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 22, no. 12, pp. 1349–1380, 2000. View at Publisher · View at Google Scholar · View at Scopus