About this Journal Submit a Manuscript Table of Contents
Diagnostic and Therapeutic Endoscopy
Volume 2012 (2012), Article ID 791873, 11 pages
http://dx.doi.org/10.1155/2012/791873
Review Article

Proton Pump Inhibitor Therapy before and after Endoscopic Submucosal Dissection: A Review

1First Department of Medicine, Hamamatsu University School of Medicine, Higashi-ku, Hamamatsu 431-3192, Japan
2Department of Gastroenterology, College of Medicine, Dong-A University, Busan 602-715, Republic of Korea
3Department of Gastroenterology, Seirei General Hospital, Naka-ku, Hamamatsu 430-8558, Japan
4Department of Endoscopic and Photodynamic Medicine, Hamamatsu University School of Medicine, Higashi-ku, Hamamatsu 431-3192, Japan
5Center for Clinical Research, Hamamatsu University School of Medicine, Higashi-ku, Hamamatsu 431-3192, Japan

Received 13 March 2012; Accepted 23 May 2012

Academic Editor: Ji Hyun Kim

Copyright © 2012 Mitsushige Sugimoto et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Fujishiro, “Endoscopic submucosal dissection for stomach neoplasms,” World Journal of Gastroenterology, vol. 12, no. 32, pp. 5108–5112, 2006. View at Scopus
  2. H. Ono, H. Kondo, T. Gotoda et al., “Endoscopic mucosal resection for treatment of early gastric cancer,” Gut, vol. 48, no. 2, pp. 225–229, 2001. View at Publisher · View at Google Scholar · View at Scopus
  3. T. Gotoda, “A large endoscopic resection by endoscopic submucosal dissection procedure for early gastric cancer,” Clinical Gastroenterology and Hepatology, vol. 3, no. 7, pp. S71–S73, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. M. J. Hull, M. Mino-Kenudson, N. S. Nishioka et al., “Endoscopic mucosal resection: an improved diagnostic procedure for early gastroesophageal epithelial neoplasms,” The American Journal of Surgical Pathology, vol. 30, no. 1, pp. 114–118, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. S. Oka, S. Tanaka, I. Kaneko et al., “Advantage of endoscopic submucosal dissection compared with EMR for early gastric cancer,” Gastrointestinal Endoscopy, vol. 64, no. 6, pp. 877–883, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. K. Watanabe, S. Ogata, S. Kawazoe et al., “Clinical outcomes of EMR for gastric tumors: historical pilot evaluation between endoscopic submucosal dissection and conventional mucosal resection,” Gastrointestinal Endoscopy, vol. 63, no. 6, pp. 776–782, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Fujishiro, N. Yahagi, N. Kakushima et al., “Successful nonsurgical management of perforation complicating endoscopic submucosal dissection of gastrointestinal epithelial neoplasms,” Endoscopy, vol. 38, no. 10, pp. 1001–1006, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. M. Tanaka, H. Ono, N. Hasuike, and K. Takizawa, “Endoscopic submucosal dissection of early gastric cancer,” Digestion, vol. 77, no. 1, pp. 23–28, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. Y. Cao, C. Liao, A. Tan, Y. Gao, Z. Mo, and F. Gao, “Meta-analysis of endoscopic submucosal dissection versus endoscopic mucosal resection for tumors of the gastrointestinal tract,” Endoscopy, vol. 41, no. 9, pp. 751–757, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. I. K. Chung, J. H. Lee, S. H. Lee et al., “Therapeutic outcomes in 1000 cases of endoscopic submucosal dissection for early gastric neoplasms: Korean ESD Study Group multicenter study,” Gastrointestinal Endoscopy, vol. 69, no. 7, pp. 1228–1235, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. S. Enomoto, N. Yahagi, M. Fujishiro et al., “Novel endoscopic hemostasis technique for use during endoscopic submucosal dissection,” Endoscopy, vol. 39, supplement 1, p. E156, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Hirao, K. Masuda, T. Asanuma et al., “Endoscopic resection of early gastric cancer and other tumors with local injection of hypertonic saline-epinephrine,” Gastrointestinal Endoscopy, vol. 34, no. 3, pp. 264–269, 1988. View at Scopus
  13. A. Imagawa, H. Okada, Y. Kawahara et al., “Endoscopic submucosal dissection for early gastric cancer: results and degrees of technical difficulty as well as success,” Endoscopy, vol. 38, no. 10, pp. 987–990, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. N. Kakushima, M. Fujishiro, S. Kodashima, Y. Muraki, A. Tateishi, and M. Omata, “A learning curve for endoscopic submucosal dissection of gastric epithelial neoplasms,” Endoscopy, vol. 38, no. 10, pp. 991–995, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. Y. Onozato, H. Ishihara, H. Iizuka et al., “Endoscopic submucosal dissection for early gastric cancers and large flat adenomas,” Endoscopy, vol. 38, no. 10, pp. 980–986, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. S. Hirasaki, H. Kanzaki, M. Matsubara et al., “Treatment of over 20 mm gastric cancer by endoscopic submucosal dissection using an insulation-tipped diathermic knife,” World Journal of Gastroenterology, vol. 13, no. 29, pp. 3981–3984, 2007. View at Scopus
  17. H. Ono, N. Hasuike, T. Inui et al., “Usefulness of a novel electrosurgical knife, the insulation-tipped diathermic knife-2, for endoscopic submucosal dissection of early gastric cancer,” Gastric Cancer, vol. 11, no. 1, pp. 47–52, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. H. Isomoto, S. Shikuwa, N. Yamaguchi et al., “Endoscopic submucosal dissection for early gastric cancer: a large-scale feasibility study,” Gut, vol. 58, no. 3, pp. 331–336, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. S. Hoteya, T. Iizuka, D. Kikuchi, and N. Yahagi, “Benefits of endoscopic submucosal dissection according to size and location of gastric neoplasm, compared with conventional mucosal resection,” Journal of Gastroenterology and Hepatology, vol. 24, no. 6, pp. 1102–1106, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. Y. Tsuji, K. Ohata, T. Ito et al., “Risk factors for bleeding after endoscopic submucosal dissection for gastric lesions,” World Journal of Gastroenterology, vol. 16, no. 23, pp. 2913–2917, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. M. Higashiyama, S. Oka, S. Tanaka et al., “Risk factors for bleeding after endoscopic submucosal dissection of gastric epithelial neoplasm,” Digestive Endoscopy, vol. 23, pp. 290–295, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. S. Kawano, H. Okada, Y. Kawahara et al., “Proton pump inhibitor dose-related healing rate of artificial ulcers after endoscopic submucosal dissection: a prospective randomized controlled trial,” Digestion, vol. 84, no. 1, pp. 46–53, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. H. Imaeda, N. Hosoe, H. Suzuki et al., “Effect of lansoprazole versus roxatidine on prevention of bleeding and promotion of ulcer healing after endoscopic submucosal dissection for superficial gastric neoplasia,” Journal of Gastroenterology, vol. 46, pp. 1267–1272, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. T. Akasaka, T. Nishida, S. Tsutsui et al., “Short-term outcomes of endoscopic submucosal dissection (ESD) for early gastric neoplasm: multicenter survey by osaka university ESD study group,” Digestive Endoscopy, vol. 23, no. 1, pp. 73–77, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. O. Goto, M. Fujishiro, I. Oda, et al., “A multicenter survey of the management after gastric endoscopic submucosal dissection related to postoperative bleeding,” Digestive Diseases and Sciences, vol. 57, pp. 435–439, 2012. View at Publisher · View at Google Scholar
  26. T. Gotoda, H. Yamamoto, and R. M. Soetikno, “Endoscopic submucosal dissection of early gastric cancer,” Journal of Gastroenterology, vol. 41, no. 10, pp. 929–942, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. T. Toyokawa, T. Inaba, S. Omote, et al., “Risk factors for perforation and delayed bleeding associated with endoscopic submucosal dissection for early gastric neoplasms, analysis of 1123 lesions,” Journal of Gastroenterology and Hepatology, vol. 27, no. 5, pp. 907–912, 2012. View at Publisher · View at Google Scholar
  28. J. S. Jang, S. R. Choi, D. Y. Graham et al., “Risk factors for immediate and delayed bleeding associated with endoscopic submucosal dissection of gastric neoplastic lesions,” Scandinavian Journal of Gastroenterology, vol. 44, no. 11, pp. 1370–1376, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. K. Okada, Y. Yamamoto, A. Kasuga et al., “Risk factors for delayed bleeding after endoscopic submucosal dissection for gastric neoplasm,” Surgical Endoscopy and Other Interventional Techniques, vol. 25, no. 1, pp. 98–107, 2011. View at Publisher · View at Google Scholar · View at Scopus
  30. H. Messmann and A. Probst, “Management of endoscopic submucosal dissection complications,” Endoscopy, vol. 41, no. 8, pp. 712–714, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. K. Takizawa, I. Oda, T. Gotoda et al., “Routine coagulation of visible vessels may prevent delayed bleeding after endoscopic submucosal dissection—an analysis of risk factors,” Endoscopy, vol. 40, no. 3, pp. 179–183, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. M. Fujishiro, N. Abe, M. Endo et al., “Current managements and outcomes of peptic and artificial ulcer bleeding in Japan,” Digestive Endoscopy, vol. 22, no. 1, pp. S9–S14, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. E. H. Awtry and J. Loscalzo, “Aspirin,” Circulation, vol. 101, no. 10, pp. 1206–1218, 2000. View at Scopus
  34. A. S. Taha, W. J. Angerson, R. P. Knill-Jones, and O. Blatchford, “Upper gastrointestinal haemorrhage associated with low-dose aspirin and anti-thrombotic drugs—a 6-year analysis and comparison with non-steroidal anti-inflammatory drugs,” Alimentary Pharmacology and Therapeutics, vol. 22, no. 4, pp. 285–289, 2005. View at Publisher · View at Google Scholar · View at Scopus
  35. M. Nishino, M. Sugimoto, C. Kodaira et al., “Relationship between low-dose aspirin-induced gastric mucosal injury and intragastric pH in healthy volunteers,” Digestive Diseases and Sciences, vol. 55, no. 6, pp. 1627–1636, 2010. View at Publisher · View at Google Scholar · View at Scopus
  36. M. Sugimoto, M. Nishino, C. Kodaira, et al., “Impact of acid inhibition on esophageal mucosal injury induced by low-dose aspirin,” Digestion, vol. 85, pp. 9–17, 2011.
  37. M. Sugimoto, M. Nishino, C. Kodaira et al., “Esophageal mucosal injury with low-dose aspirin and its prevention by rabeprazole,” Journal of Clinical Pharmacology, vol. 50, no. 3, pp. 320–330, 2010. View at Publisher · View at Google Scholar · View at Scopus
  38. S. Derry and Y. K. Loke, “Risk of gastrointestinal haemorrhage with long term use of aspirin: meta-analysis,” British Medical Journal, vol. 321, no. 7270, pp. 1183–1187, 2000. View at Scopus
  39. M. Nishino, M. Sugimoto, C. Kodaira et al., “Preventive effects of lansoprazole and famotidine on gastric mucosal injury induced by low-dose aspirin in Helicobacter pylori-negative healthy volunteers,” Journal of Clinical Pharmacology, vol. 51, no. 7, pp. 1079–1086, 2011. View at Publisher · View at Google Scholar · View at Scopus
  40. J. H. Lim, S. G. Kim, J. W. Kim, et al., “Do antiplatelets increase the risk of bleeding after endoscopic submucosal dissection of gastric neoplasms?” Gastrointestinal Endoscopy, vol. 75, no. 4, pp. 719–727, 2012. View at Publisher · View at Google Scholar
  41. S. J. Cho, I. J. Choi, C. G. Kim, et al., “Aspirin use and bleeding risk after endoscopic submucosal dissection in patients with gastric neoplasms,” Endoscopy, vol. 44, pp. 114–121, 2012. View at Publisher · View at Google Scholar
  42. F. W. Green Jr., M. M. Kaplan, L. E. Curtis, and P. H. Levine, “Effect of acid and pepsin on blood coagulation and platelet aggregation: a possible contributor to prolonged gastroduodenal mucosal hemorrhage,” Gastroenterology, vol. 74, no. 1, pp. 38–43, 1978. View at Scopus
  43. D. Barer, A. Ogilvie, and D. Henry, “Cimetidine and tranexamic acid in the treatment of acute upper-gastrointestinal-tract bleeding,” The New England Journal of Medicine, vol. 308, no. 26, pp. 1571–1575, 1983. View at Scopus
  44. J. Labenz, U. Peitz, C. Leusing, B. Tillenburg, A. L. Blum, and G. Börsch, “Efficacy of primed infusions with high dose ranitidine and omeprazole to maintain high intragastric pH in patients with peptic ulcer bleeding: a prospective randomised controlled study,” Gut, vol. 40, no. 1, pp. 36–41, 1997. View at Scopus
  45. J. Andersen, M. Strom, J. Naesdal, K. Leire, and A. Walan, “Intravenous omeprazole: effect of a loading dose on 24-h intragastric pH,” Alimentary Pharmacology and Therapeutics, vol. 4, no. 1, pp. 65–72, 1990. View at Scopus
  46. E. C. Klinkenberg-Knol, H. P. M. Festen, J. B. Jansen et al., “Long-term treatment with omeprazole for refractory reflux esophagitis: efficacy and safety,” Annals of Internal Medicine, vol. 121, no. 3, pp. 161–167, 1994. View at Scopus
  47. L. J. Hixson, C. L. Kelley, W. N. Jones, and C. D. Tuohy, “Current trends in the pharmacotherapy for peptic ulcer disease,” Archives of Internal Medicine, vol. 152, no. 4, pp. 726–732, 1992. View at Publisher · View at Google Scholar · View at Scopus
  48. G. Sachs, J. M. Shin, C. Briving, B. Wallmark, and S. Hersey, “The pharmacology of the gastric acid pump: the H+, K+ ATPase,” Annual Review of Pharmacology and Toxicology, vol. 35, pp. 277–305, 1995. View at Scopus
  49. T. Saitoh, Y. Fukushima, H. Otsuka et al., “Effects of rabeprazole, lansoprazole and omeprazole on intragastric pH in CYP2C19 extensive metabolizers,” Alimentary Pharmacology and Therapeutics, vol. 16, no. 10, pp. 1811–1817, 2002. View at Publisher · View at Google Scholar · View at Scopus
  50. P. Müller, M. A. Göksu, W. Fuchs, F. Schlüter, and B. Simon, “Initial potency of lansoprazole and omeprazole tablets on pentagastrin-stimulated gastric acid secretion—a placebo-controlled study in healthy volunteers,” Alimentary Pharmacology and Therapeutics, vol. 14, no. 9, pp. 1225–1229, 2000. View at Publisher · View at Google Scholar · View at Scopus
  51. C. W. Howden, J. A. H. Forrest, and J. L. Reid, “Effects of single and repeated doses of omeprazole on gastric acid and pepsin secretion in man,” Gut, vol. 25, no. 7, pp. 707–710, 1984. View at Scopus
  52. J. B. M. J. Jansen, P. Lundborg, L. C. Baak et al., “Effect of single and repeated intravenous doses of omeprazole on pentagastrin stimulated gastric acid secretion and pharmacokinetics in man,” Gut, vol. 29, no. 1, pp. 75–80, 1988. View at Scopus
  53. Y. Abe, M. Inamori, J. I. Togawa et al., “The comparative effects of single intravenous doses of omeprazole and famotidine on intragastric pH,” Journal of Gastroenterology, vol. 39, no. 1, pp. 21–25, 2004. View at Publisher · View at Google Scholar · View at Scopus
  54. R. M. Khoury, P. O. Katz, and D. O. Castell, “Post-prandial ranitidine is superior to post-prandial omeprazole in control of gastric acidity in healthy volunteers,” Alimentary Pharmacology and Therapeutics, vol. 13, no. 9, pp. 1211–1214, 1999. View at Publisher · View at Google Scholar · View at Scopus
  55. J. S. Arnestad, P. M. Kleveland, and H. L. Waldum, “In single doses ranitidine effervescent is more effective than lansoprazole in decreasing gastric acidity,” Alimentary Pharmacology and Therapeutics, vol. 11, no. 2, pp. 355–358, 1997. View at Scopus
  56. M. Sugimoto, T. Furuta, N. Shirai, M. Ikuma, A. Hishida, and T. Ishizaki, “Initial 48-hour acid inhibition by intravenous infusion of omeprazole, famotidine, or both in relation to cytochrome P450 2C19 genotype status,” Clinical Pharmacology & Therapeutics, vol. 80, no. 5, pp. 539–548, 2006. View at Publisher · View at Google Scholar · View at Scopus
  57. Y. Yamaguchi, N. Katsumi, M. Tauchi et al., “A prospective randomized trial of either famotidine or omeprazole for the prevention of bleeding after endoscopic mucosal resection and the healing of endoscopic mucosal resection-induced ulceration,” Alimentary Pharmacology and Therapeutics, Supplement, vol. 21, no. 2, pp. 111–115, 2005. View at Scopus
  58. M. Sugimoto, T. Furuta, N. Shirai et al., “Different dosage regimens of rabeprazole for nocturnal gastric acid inhibition in relation to cytochrome P450 2C19 genotype status,” Clinical Pharmacology & Therapeutics, vol. 76, no. 4, pp. 290–301, 2004. View at Publisher · View at Google Scholar · View at Scopus
  59. T. Ishizaki and Y. Horai, “Review article: cytochrome P450 and the metabolism of proton pump inhibitors—emphasis on rabeprazole,” Alimentary Pharmacology and Therapeutics, Supplement, vol. 13, no. 3, pp. 27–36, 1999. View at Scopus
  60. Y. Horai, M. Kimura, H. Furuie et al., “Pharmacodynamic effects and kinetic disposition of rabeprazole in relation to CYP2C19 genotypes,” Alimentary Pharmacology and Therapeutics, vol. 15, no. 6, pp. 793–803, 2001. View at Publisher · View at Google Scholar · View at Scopus
  61. N. Shirai, T. Furuta, Y. Moriyama et al., “Effects of CYP2C19 genotypic differences in the metabolism of omeprazole and rabeprazole on intragastric pH,” Alimentary Pharmacology and Therapeutics, vol. 15, no. 12, pp. 1929–1937, 2001. View at Publisher · View at Google Scholar · View at Scopus
  62. N. Shirai, T. Furuta, F. Xiao et al., “Comparison of lansoprazole and famotidine for gastric acid inhibition during the daytime and night-time in different CYP2C19 genotype groups,” Alimentary Pharmacology and Therapeutics, vol. 16, no. 4, pp. 837–846, 2002. View at Publisher · View at Google Scholar · View at Scopus
  63. M. Chang, M. L. Dahl, G. Tybring, E. Götharson, and L. Bertilsson, “Use of omeprazole as a probe drug for CYP2C19 phenotype in swedish caucasians: comparison with S-mephenytoin hydroxylation phenotype and CYP2C19 genotype,” Pharmacogenetics, vol. 5, no. 6, pp. 358–363, 1995. View at Publisher · View at Google Scholar · View at Scopus
  64. T. Kubota, K. Chiba, and T. Ishizaki, “Genotyping of S-mephenytoin 4'-hydroxylation in an extended Japanese population,” Clinical Pharmacology & Therapeutics, vol. 60, no. 6, pp. 661–666, 1996. View at Publisher · View at Google Scholar · View at Scopus
  65. T. Furuta, K. Ohashi, K. Kosuge, et al., “CYP2C19 genotype status and effect of omeprazole on intragastric pH in humans,” Clinical Pharmacology & Therapeutics, vol. 65, pp. 552–561, 1999.
  66. T. Furuta, N. Shirai, M. Takashima et al., “Effects of genotypic differences in CYP2C19 status on cure rates for Helicobacter pylori infection by dual therapy with rabeprazole plus amoxicillin,” Pharmacogenetics, vol. 11, no. 4, pp. 341–348, 2001. View at Publisher · View at Google Scholar · View at Scopus
  67. M. Sugimoto, T. Furuta, N. Shirai et al., “Comparison of an increased dosage regimen of rabeprazole versus a concomitant dosage regimen of famotidine with rabeprazole for nocturnal gastric acid inhibition in relation to cytochrome P450 2C19 genotypes,” Clinical Pharmacology & Therapeutics, vol. 77, no. 4, pp. 302–311, 2005. View at Publisher · View at Google Scholar · View at Scopus
  68. T. Ishizaki, D. R. Sohn, K. Kobayashi et al., “Interethnic differences in omeprazole metabolism in the two S-mephenytoin hydroxylation phenotypes studied in Caucasians and Orientals,” Therapeutic Drug Monitoring, vol. 16, no. 2, pp. 214–215, 1994. View at Scopus
  69. S. M. de Morais, J. A. Goldstein, H. G. Xie, et al., “Genetic analysis of the S-mephenytoin polymorphism in a Chinese population,” Clinical Pharmacology & Therapeutics, vol. 58, pp. 404–411, 1995. View at Publisher · View at Google Scholar
  70. S. C. Sim, C. Risinger, M. L. Dahl et al., “A common novel CYP2C19 gene variant causes ultrarapid drug metabolism relevant for the drug response to proton pump inhibitors and antidepressants,” Clinical Pharmacology & Therapeutics, vol. 79, no. 1, pp. 103–113, 2006. View at Publisher · View at Google Scholar · View at Scopus
  71. M. Kurzawski, B. Gawrońska-Szklarz, J. Wrześniewska, A. Siuda, T. Starzyńska, and M. Droździk, “Effect of CYP2C19*17 gene variant on Helicobacter pylori eradication in peptic ulcer patients,” European Journal of Clinical Pharmacology, vol. 62, no. 10, pp. 877–880, 2006. View at Publisher · View at Google Scholar · View at Scopus
  72. K. Sugimoto, T. Uno, H. Yamazaki, and T. Tateishi, “Limited frequency of the CYP2C19*17 allele and its minor role in a Japanese population,” British Journal of Clinical Pharmacology, vol. 65, no. 3, pp. 437–439, 2008. View at Publisher · View at Google Scholar · View at Scopus
  73. U. Gladziwa and U. Klotz, “Pharmacokinetic optimisation of the treatment of peptic ulcer in patients with renal failure,” Clinical Pharmacokinetics, vol. 27, no. 5, pp. 393–408, 1994. View at Scopus
  74. N. Uedo, Y. Takeuchi, T. Yamada et al., “Effect of a proton pump inhibitor or an H2-receptor antagonist on prevention of bleeding from ulcer after endoscopic submucosal dissection of early gastric cancer: a prospective randomized controlled trial,” The American Journal of Gastroenterology, vol. 102, no. 8, pp. 1610–1616, 2007. View at Publisher · View at Google Scholar · View at Scopus
  75. Z. Yang, Q. Wu, Z. Liu, et al., “Proton pump inhibitors versus histamine-2-receptor antagonists for the management of iatrogenic gastric ulcer after endoscopic mucosal resection or endoscopic submucosal dissection: a meta-analysis of randomized trials,” Digestion, vol. 84, pp. 315–320, 2011. View at Publisher · View at Google Scholar
  76. S. Ono, M. Kato, Y. Ono et al., “Effects of preoperative administration of omeprazole on bleeding after endoscopic submucosal dissection: a prospective randomized controlled trial,” Endoscopy, vol. 41, no. 4, pp. 299–303, 2009. View at Publisher · View at Google Scholar · View at Scopus
  77. M. Kobayashi, M. Takeuchi, S. Hashimoto, et al., “Contributing factors to gastric ulcer healing after endoscopic submucosal dissection including the promoting effect of rebamipide,” Digestive Diseases and Sciences, vol. 57, pp. 119–126, 2012. View at Publisher · View at Google Scholar
  78. N. Kakushima, M. Fujishiro, N. Yahagi, S. Kodashima, M. Nakamura, and M. Omata, “Helicobacter pylori status and the extent of gastric atrophy do not affect ulcer healing after endoscopic submucosal dissection,” Journal of Gastroenterology and Hepatology, vol. 21, no. 10, pp. 1586–1589, 2006. View at Publisher · View at Google Scholar · View at Scopus
  79. S. H. Lee, C. K. Lee, I. K. Chung, et al., “Optimal duration of proton pump inhibitor in the treatment of endoscopic submucosal dissection-induced ulcers: a retrospective analysis and prospective validation study,” Digestive Diseases and Sciences, vol. 57, pp. 429–434, 2012. View at Publisher · View at Google Scholar
  80. W. G. Shin, S. J. Kim, M. H. Choi, et al., “Can rebamipide and proton pump inhibitor combination therapy promote the healing of endoscopic submucosal dissection-induced ulcers? A randomized, prospective, multicenter study,” Gastrointestinal Endoscopy, no. 4, pp. 739–747, 2012.
  81. S. Fujiwara, Y. Morita, T. Toyonaga et al., “A randomized controlled trial of rebamipide plus rabeprazole for the healing of artificial ulcers after endoscopic submucosal dissection,” Journal of Gastroenterology, vol. 46, no. 5, pp. 595–602, 2011. View at Publisher · View at Google Scholar · View at Scopus
  82. F. Di Mario, G. Battaglia, G. Leandro, G. Grasso, F. Vianello, and S. Vigneri, “Short-term treatment of gastric ulcer: a meta-analytical evaluation of blind trials,” Digestive Diseases and Sciences, vol. 41, no. 6, pp. 1108–1131, 1996. View at Publisher · View at Google Scholar · View at Scopus
  83. S. R. Tunis, I. A. Sheinhait, C. H. Schmid, D. J. Bishop, and S. D. Ross, “Lansoprazole compared with histamine2-receptor antagonists in healing gastric ulcers: a meta-analysis,” Clinical Therapeutics, vol. 19, no. 4, pp. 743–757, 1997. View at Publisher · View at Google Scholar · View at Scopus
  84. B. D. Ye, J. H. Cheon, K. D. Choi et al., “Omeprazole may be superior to famotidine in the management of iatrogenic ulcer after endoscopic mucosal resection: a prospective randomized controlled trial,” Alimentary Pharmacology and Therapeutics, vol. 24, no. 5, pp. 837–843, 2006. View at Publisher · View at Google Scholar · View at Scopus
  85. N. Takeuchi, E. Umegaki, T. Takeuchi, et al., “Gastric ulcer healing after treatment of endoscopic submucosal dissection in Japanese: comparison of H2 receptor antagonist and proton pump inhibitor administration,” Journal of Clinical Biochemistry and Nutrition, vol. 49, pp. 216–221, 2011. View at Publisher · View at Google Scholar
  86. P. L. Peghini, P. O. Katz, and D. O. Castell, “Ranitidine controls nocturnal gastric acid breakthrough on omeprazole: a controlled study in normal subjects,” Gastroenterology, vol. 115, no. 6, pp. 1335–1339, 1998. View at Scopus
  87. T. Katsube, K. Adachi, A. Kawamura et al., “Helicobacter pylori infection influences nocturnal gastric acid breakthrough,” Alimentary Pharmacology and Therapeutics, vol. 14, no. 8, pp. 1049–1056, 2000. View at Publisher · View at Google Scholar · View at Scopus
  88. S. Xue, P. O. Katz, P. Banerjee, R. Tutuian, and D. O. Castell, “Bedtime H2 blockers improve nocturnal gastric acid control in GERD patients on proton pump inhibitors,” Alimentary Pharmacology and Therapeutics, vol. 15, no. 9, pp. 1351–1356, 2001. View at Publisher · View at Google Scholar · View at Scopus
  89. M. M. Wolfe and A. H. Soll, “The physiology of gastric acid secretion,” The New England Journal of Medicine, vol. 319, no. 26, pp. 1707–1715, 1988. View at Scopus