About this Journal Submit a Manuscript Table of Contents
Evidence-Based Complementary and Alternative Medicine
Volume 2011 (2011), Article ID 165968, 6 pages
http://dx.doi.org/10.1093/ecam/nep029
Original Article

Royal Jelly Facilitates Restoration of the Cognitive Ability in Trimethyltin-Intoxicated Mice

1Nagaragawa Research Center, API Co., Ltd, Nagara, Gifu 502-0071, Japan
2Laboratory of Molecular Biology, Gifu Pharmaceutical University, Daigaku-nishi 1-25-4, Gifu 501-1196, Japan

Received 5 July 2008; Accepted 16 March 2009

Copyright © 2011 Noriko Hattori et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. Izuta, Y. Chikaraishi, M. Shimazawa, S. Mishima, and H. Hara, “10-hydroxy-2-decenoic acid, a major fatty acid from RJ, inhibits VEGF-induced angiogenesis in human umbilical vein endothelial cells,” in Evidence-Based Complementary and Alternative Medicine, vol. 6, no. 4, pp. 489–494, 2009. View at Publisher · View at Google Scholar · View at PubMed
  2. T. Takenaka, “Chemical compositions of royal jelly,” Honeybee Science, vol. 3, pp. 69–74, 1982.
  3. T. Echigo, T. Takenaka, and K. Yatsunami, “Comparative studies on chemical composition of honey, royal jelly and pollen loads,” Bulletin of the Faculty of Agriculture Tamagawa University, vol. 26, pp. 1–12, 1986.
  4. A. Fujii, S. Kobayashi, and S. Kobayashi, “Augmentation of wound healing by royal jelly (RJ) in streptozotocin-diabetic rats,” Japanese Journal of Pharmacology, vol. 53, no. 3, pp. 331–337, 1990.
  5. H. Oka, Y. Emori, N. Kobayashi, Y. Hayashi, and K. Nomoto, “Suppression of allergic reactions by royal jelly in association with the restoration of macrophage function and the improvement of Th1/Th2 cell responses,” International Immunopharmacology, vol. 1, no. 3, pp. 521–532, 2001. View at Publisher · View at Google Scholar
  6. L. Šver, N. Oršolić, Z. Tadić, B. Njari, I. Valpotić, and I. Bašić, “A royal jelly as a new potential immunomodulator in rats and mice,” Comparative Immunology, Microbiology and Infectious Diseases, vol. 19, no. 1, pp. 31–38, 1996. View at Publisher · View at Google Scholar
  7. Y. Taniguchi, K. Kohno, and K. Kohno, “Oral administration of royal jelly inhibits the development of atopic dermatitis-like skin lesions in NC/Nga mice,” International Immunopharmacology, vol. 3, no. 9, pp. 1313–1324, 2003. View at Publisher · View at Google Scholar
  8. N. Hattori, H. Nomoto, S. Mishima, S. Inagaki, M. Goto, M. Sako, and S. Furukawa, “Identification of AMP N1-oxide in royal jelly as a component neurotrophic toward cultured rat pheochromocytoma PC12 cells,” Bioscience, Biotechnology and Biochemistry, vol. 70, no. 4, pp. 897–906, 2006. View at Publisher · View at Google Scholar
  9. N. Hattori, H. Nomoto, H. Fukumitsu, S. Mishima, and S. Furukawa, “Royal jelly-induced neurite outgrowth from rat pheochromocytoma PC12 cells requires integrin signal independent of activation of extracellular signal-regulated kinases,” Biomedical Research, vol. 28, no. 3, pp. 139–146, 2007. View at Publisher · View at Google Scholar
  10. N. Hattori, H. Nomoto, H. Fukumitsu, S. Mishima, and S. Furukawa, “Royal jelly and its unique fatty acid, 10-hydroxy-trans-2-decenoic acid, promote neurogenesis by neural stem/progenitor cells in vitro,” Biomedical Research, vol. 28, no. 5, pp. 261–266, 2007. View at Publisher · View at Google Scholar
  11. N. Hattori, H. Nomoto, H. Fukumitsu, S. Mishima, and S. Furukawa, “AMP N1-oxide, a unique compound of royal jelly, induces neurite outgrowth from PC12 cells via signaling by protein kinase A independent of that by mitogen-activated protein kinase,” in Evidence-Based Complementary and Alternative Medicine, vol. 7, no. 1, pp. 63–68, 2010. View at Publisher · View at Google Scholar · View at PubMed
  12. T. Abel, P. V. Nguyen, M. Barad, T. A. S. Deuel, E. R. Kandel, and R. Bourtchouladze, “Genetic demonstration of a role for PKA in the late phase of LTP and in hippocampus-based long-term memory,” Cell, vol. 88, no. 5, pp. 615–626, 1997. View at Publisher · View at Google Scholar
  13. U. Frey, Y.-Y. Huang, and E. R. Kandel, “Effects of cAMP simulate a late stage of LTP in hippocampal CA1 neurons,” Science, vol. 260, no. 5114, pp. 1661–1664, 1993.
  14. A. Fiedorowicz, I. Figiel, B. Kamińska, M. Zaremba, S. Wilk, and B. Oderfeld-Nowak, “Dentate granule neuron apoptosis and glia activation in murine hippocampus induced by trimethyltin exposure,” Brain Research, vol. 912, no. 2, pp. 116–127, 2001. View at Publisher · View at Google Scholar
  15. K. Ogita, Y. Nitta, M. Watanabe, Y. Nakatani, N. Nishiyama, C. Sugiyama, and Y. Yoneda, “In vivo activation of c-Jun N-terminal kinase signaling cascade prior to granule cell death induced by trimethyltin in the dentate gyrus of mice,” Neuropharmacology, vol. 47, no. 4, pp. 619–630, 2004. View at Publisher · View at Google Scholar · View at PubMed
  16. K. Ogita, N. Nishiyama, C. Sugiyama, K. Higuchi, M. Yoneyama, and Y. Yoneda, “Regeneration of granule neurons after lesioning of hippocampal dentate gyrus: evaluation using adult mice treated with trimethyltin chloride as a model,” Journal of Neuroscience Research, vol. 82, pp. 609–621, 2005.
  17. M. Niittykoski, R. Lappalainen, J. Jolkkonen, A. Haapalinna, P. Riekkinen Sr., and J. Sirvio, “Systemic administration of atipamezole, a selective antagonist of alpha-2 adrenoceptors, facilitates behavioural activity but does not influence short-term or long-term memory in trimethyltin-intoxicated and control rats,” Neuroscience & Biobehavioral Reviews, vol. 22, pp. 735–750, 1998.
  18. N. Ishida, M. Akaike, S. Tsutsumi, et al., “Trimethyltin syndrome as a hippocampal degeneration model: temporal changes and neurochemical features of seizure susceptibility and learning impairment,” Neuroscience, vol. 81, pp. 1183–1191, 1997.
  19. K. Yamada, T. Tanaka, L. B. Zou, et al., “Long-term deprivation of estrogens by ovariectomy potentiates beta-amyloyd-induced working memory deficits in rats,” British Journal of Pharmacology, vol. 128, pp. 419–427, 1999.
  20. F. H. Gage, “Mammalian neural stem cells,” Science, vol. 287, no. 5457, pp. 1433–1438, 2000. View at Publisher · View at Google Scholar
  21. C. M. Morshead, C. G. Craig, and D. Van der Kooy, “In vivo clonal analyses reveal the properties of endogenous neural stem cell proliferation in the adult mammalian forebrain,” Development, vol. 125, no. 12, pp. 2251–2261, 1998.
  22. C. Lois and A. Alvarez-Buylla, “Long-distance neuronal migration in the adult mammalian brain,” Science, vol. 264, no. 5162, pp. 1145–1148, 1994.
  23. M. B. Luskin, “Neuronal cell lineage in the vertebrate central nervous system,” FASEB Journal, vol. 8, no. 10, pp. 722–730, 1994.
  24. E. Gould, P. Tanapat, N. B. Hastings, and T. J. Shors, “Neurogenesis in adulthood: a possible role in learning,” Trends in Cognitive Sciences, vol. 3, pp. 186–192, 1999.
  25. N. Hattori, H. Nomoto, H. Fukumitsu, S. Mishima, and S. Furukawa, “AMP N1-oxide potentiates astrogenesis by cultured neural stem/progenitor cells through STAT3 activation,” Biomedical Research, vol. 28, no. 6, pp. 295–299, 2007. View at Publisher · View at Google Scholar
  26. D. T. Balu and I. Lucki, “Adult hippocampal neurogenesis: regulation, functional implications, and contribution to disease pathology,” Neuroscience and Biobehavioral Reviews, vol. 33, no. 3, pp. 232–252, 2009. View at Publisher · View at Google Scholar · View at PubMed