About this Journal Submit a Manuscript Table of Contents
Evidence-Based Complementary and Alternative Medicine
Volume 2011 (2011), Article ID 403709, 11 pages
http://dx.doi.org/10.1093/ecam/neq056
Review Article

New Perspectives on Chinese Herbal Medicine (Zhong-Yao) Research and Development

1Department of Pharmacology, Beijing University of Chinese Medicine, Beijing 100102 , China
2Department of Applied Biology & Chemical Technology, Hong Kong Polytechnic University, China
3Hôpital de la Tour, 1217 Geneva, Switzerland
4Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, China
5Department of Essential Medicines and Pharmaceutical Policies, World Health Organization, China
6Department of Biochemistry, Hong Kong University of Science & Technology, China

Received 12 August 2009; Accepted 20 April 2010

Copyright © 2011 Si-Yuan Pan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. E. L. Tobinick, “The value of drug repositioning in the current pharmaceutical market,” Drug News and Perspectives, vol. 22, no. 2, pp. 119–125, 2009. View at Publisher · View at Google Scholar
  2. E. F. Schmid and D. A. Smith, “Keynote review: is declining innovation in the pharmaceutical industry a myth?” Drug Discovery Today, vol. 10, no. 15, pp. 1031–1039, 2005. View at Publisher · View at Google Scholar · View at PubMed
  3. E. F. Schmid and D. A. Smith, “R&D technology investments: misguided and expensive or a better way to discover medicines?” Drug Discovery Today, vol. 11, no. 17-18, pp. 775–784, 2006. View at Publisher · View at Google Scholar · View at PubMed
  4. J. M. Reichert, S. L. Rochon, and B. D. Zhang, “Finding value in the U.S. Food and Drug Administration's Fast Track program,” Drug News and Perspectives, vol. 22, no. 1, pp. 53–58, 2009. View at Publisher · View at Google Scholar
  5. A. I. Graul, “Promoting, improving and accelerating the drug development and approval processes,” Drug News and Perspectives, vol. 21, no. 1, pp. 36–43, 2008. View at Google Scholar
  6. S. A. Doggrell, “Natalizumab in multiple sclerosis: proceed with caution?” Expert Opinion on Pharmacotherapy, vol. 7, no. 12, pp. 1675–1678, 2006. View at Publisher · View at Google Scholar · View at PubMed
  7. A. I. Graul, L. A. Sorbera, J. Bozzo, N. Serradell, L. Revel, and J. R. Prous, “The year's new drugs and biologics—2006,” Drug News and Perspectives, vol. 20, no. 1, pp. 17–44, 2007. View at Google Scholar
  8. A. I. Graul, J. R. Prous, M. Barrionuevo et al., “The year's new drugs and biologics—2007,” Drug News and Perspectives, vol. 21, no. 1, pp. 7–35, 2008. View at Google Scholar
  9. A. I. Graul, L. Revel, M. Barrionuevo, E. Cruces, E. Rosa, and C. Verges, “The year's new drugs & biologics—2008,” Drug News Perspect, vol. 22, pp. 7–29, 2009. View at Google Scholar
  10. J. Xu and Y. Yang, “Traditional Chinese medicine in the Chinese health care system,” Health Policy, vol. 90, no. 2-3, pp. 133–139, 2009. View at Publisher · View at Google Scholar · View at PubMed
  11. X. Xiao, P. Xiao, and Y. Wang, “Some key issues about scientific research on traditional Chinese medicine,” China Journal of Chinese Materia Medica, vol. 34, pp. 119–123, 2009 (Chinese). View at Google Scholar
  12. A.-P. Lu, H.-W. Jia, C. Xiao, and Q.-P. Lu, “Theory of traditional chinese medicine and therapeutic method of diseases,” World Journal of Gastroenterology, vol. 10, no. 13, pp. 1854–1856, 2004. View at Google Scholar
  13. C. Matsumoto, T. Kojima, K. Ogawa et al., “A proteomic approach for the diagnosis of 'Oketsu' (blood stasis), a pathophysiologic concept of Japanese traditional (Kampo) medicine,” Evidence-Based Complementary and Alternative Medicine, vol. 5, no. 4, pp. 463–474, 2008. View at Publisher · View at Google Scholar · View at PubMed
  14. W.-F. Li, J.-G. Jiang, and J. Chen, “Chinese medicine and its modernization demands,” Archives of Medical Research, vol. 39, no. 2, pp. 246–251, 2008. View at Publisher · View at Google Scholar · View at PubMed
  15. Z. L. Deng, “Application of new techniques in the innovative research of Chinese herbal medicine,” Chinese Pharmaceutical, vol. 16, pp. 58–59, 2007 (Chinese). View at Google Scholar
  16. J. D. Chen and H. Xu, “Historical development of Chinese dietary patterns and nutrition from the ancient to the modern society,” World Review of Nutrition and Dietetics, vol. 79, pp. 133–153, 1996. View at Google Scholar
  17. W. Long, P. X. Liu, and J. Gao, “Application of modern imformation technology in study of traditional Chinese medicine presciptions,” China Journal of Chinese Materia Medica, vol. 32, pp. 1260–1263, 2007 (Chinese). View at Google Scholar
  18. S. Liu, L. Z. Yi, and Y. Z. Liang, “Traditional Chinese medicine and separation science,” Journal of Separation Science, vol. 31, pp. 2113–2137, 2008. View at Google Scholar
  19. R. X. Liu, “Research of Chinese medicine formulation and equivalence,” Journal of Traditional Chinese Medicine, vol. 48, pp. 83–85, 2007 (Chinese). View at Google Scholar
  20. Sustainable Developments. 2009, http://www.acca21.org.cn/news/2003/news07-04.html.
  21. D.-C. Li, X.-K. Zhong, Z.-P. Zeng et al., “Application of targeted drug delivery system in Chinese medicine,” Journal of Controlled Release, vol. 138, no. 2, pp. 103–112, 2009. View at Publisher · View at Google Scholar · View at PubMed
  22. W. H. Li and Y. He, “Research progress of microparticles as drug delivery system for traditional Chinese medicine,” China Journal of Chinese Materia Medica, vol. 32, pp. 371–374, 2007 (Chinese). View at Google Scholar
  23. C. X. Yi, J. N. Yu, and X. M. Xu, “Nanoscale drug carriers for traditional Chinese medicine research and development,” China Journal of Chinese Materia Medica, vol. 33, pp. 1936–1940, 2008. View at Google Scholar
  24. F. Ikegami, M. Sumino, Y. Fujii, T. Akiba, and T. Satoh, “Pharmacology and toxicology of Bupleurum root-containing Kampo medicines in clinical use,” Human and Experimental Toxicology, vol. 25, no. 8, pp. 481–494, 2006. View at Publisher · View at Google Scholar
  25. Y. Nishioka, S. Kyotani, M. Miyamura, and M. Kusunose, “Influence of times of administration of a Shosaiko-to extract granule on blood concentration of its active constituents,” Chemical and Pharmaceutical Bulletin, vol. 40, no. 5, pp. 1335–1337, 1992. View at Google Scholar
  26. M. Homma, M. Ishihara, W. Qian, and Y. Kohda, “Effects of long term administration of Shakuyaku-kanzo-To and Shosaiko-To on serum potassium levels,” Yakugaku Zasshi, vol. 126, pp. 973–978, 2006 (Japanese). View at Google Scholar
  27. J. I. H. Hsiao, “Queen Mary intellectual property patent protection for Chinese herbal medicine product invention in Taiwan,” Journal of World Intellectual Property, vol. 10, pp. 1–21, 2007. View at Google Scholar
  28. J. Shi, J. W. Yang, and J. X. Kuang, “Thoughts on the Chinese herbal medicine granulaes,” Acta Academiae Medicinae Zunyi, vol. 32, pp. 557–586, 2003 (Chinese). View at Google Scholar
  29. C. G. Song, “Discuss of the decoction of Chinese herbal medicine,” Chin Com Mr, vol. 11, p. 7, 2009 (Chinese). View at Google Scholar
  30. J.-J. Xie, J. Lu, Z.-M. Qian, E. Yu, J.-A. Duan, and S.-P. Li, “Optimization and comparison of five methods for extraction of coniferyl ferulate from Angelica sinensis,” Molecules, vol. 14, no. 1, pp. 555–565, 2009. View at Publisher · View at Google Scholar · View at PubMed
  31. M. Y. Liu, G. Yu, and H. Wang, “The progress of the concentration technology of extract of traditional Chinese medicine,” China Journal of Chinese Materia Medica, vol. 31, pp. 184–187, 2006 (Chinese). View at Google Scholar
  32. Z. P. Xie, X. S. Liu, Y. Chen, M. Cai, H. B. Qu, and Y. Y. Cheng, “Advances in studies on multi-stage countercurrent extraction technology in traditional Chinese medicine,” China Journal of Chinese Materia Medica, vol. 32, pp. 884–887, 2007 (Chinese). View at Google Scholar
  33. Z. L. Deng, “Application of new techniques in the innovative research of Chinese herbal medicine,” Chinese Pharmaceutical, vol. 16, pp. 58–59, 2007 (Chinese). View at Google Scholar
  34. Z.-Y. Tang and G.-W. Ling, “Advances in studies on nano-Chinese materia medica,” Chinese Traditional and Herbal Drugs, vol. 38, no. 4, pp. 627–629, 2007. View at Google Scholar
  35. Y.-D. Zhang, “Application of nanobiological technology in medicine and its advances in China,” Acta Academiae Medicinae Sinicae, vol. 28, no. 4, pp. 579–582, 2006. View at Google Scholar
  36. G. Wei and X. Zheng, “A survey of the studies on compatible law of ingredients in Chinese herbal prescriptions,” Journal of Traditional Chinese Medicine, vol. 28, no. 3, pp. 223–227, 2008. View at Google Scholar
  37. “Chinese herbal medicinal formulae database in China,” 2009, http://www.cintcm.com/cintcm_content/tcm_database/zhongguo_fangji.htm.
  38. “Chinese herbal medicinal formulae database,” 2009, http://www.chemdrug.com/databases/db_5_1.html.
  39. X. Duan, L. Zhou, T. Wu et al., “Chinese herbal medicine suxiao jiuxin wan for angina pectoris,” Cochrane Database of Systematic Reviews, vol. 23, no. 1, Article ID CD004473, 2008. View at Publisher · View at Google Scholar · View at PubMed
  40. W. D. Jiang, D. Z. Xu, G. J. Hu, and B. Z. Lin, “Some pharmacologic effects of the “Styrax pill for coronary disease” and the pharmacological basis of a simplified styrax-borneol preparation,” Acta Pharmacologica Sinica, vol. 14, pp. 655–661, 1979 (Chinese). View at Google Scholar
  41. F. Firenzuoli and L. Gori, “Herbal medicine today: clinical and research issues,” Evidence-Based Complementary and Alternative Medicine, vol. 4, supplement 1, pp. 37–40, 2007. View at Publisher · View at Google Scholar · View at PubMed
  42. F. Clostre, “Ginkgo biloba extract (EGb 761). State of knowledge in the dawn of the year 2000,” Annales Pharmaceutiques Françaises, vol. 57, supplement 1, pp. S8–S88, 1999 (French). View at Google Scholar
  43. S. Martens and A. Mithöfer, “Flavones and flavone synthases,” Phytochemistry, vol. 66, no. 20, pp. 2399–2407, 2005. View at Publisher · View at Google Scholar · View at PubMed
  44. M. Li-Weber, “New therapeutic aspects of flavones: the anticancer properties of Scutellaria and its main active constituents Wogonin, Baicalein and Baicalin,” Cancer Treatment Reviews, vol. 35, no. 1, pp. 57–68, 2009. View at Publisher · View at Google Scholar · View at PubMed
  45. J. Y. Wang, O. Li, Y. Q. Liu, Q. Xie, Z. Huang, and P. F. Tu, “Preliminary attempt at the speciation of 25-elements in the Chinese medicinal herbs,” China Journal of Chinese Materia Medica, vol. 29, pp. 753–759, 2004 (Chinese). View at Google Scholar
  46. X. D. Ji, J. X. Jiang, Y. Jiang, W. Q. Guo, and H. T. Duan, “Effect of Shen Wu Guan Xin granules for angina pectoris due to coronary heart disease: an observation of 60 cases,” Journal of Guangzhou University of Traditional Chinese Medicine, vol. 25, pp. 391–394, 2008 (Chinese). View at Google Scholar
  47. T. Liu, J. Wang, and X. Song, “Clinical observation on effect of changmaishu in treating patients of coronary heart disease complicated with hyperviscosity,” Chinese Journal of Integrated Traditional Chinese and Western Medicine, vol. 20, pp. 338–340, 2000 (Chinese). View at Google Scholar
  48. X.-B. Dou, X.-D. Wo, and C.-L. Fan, “Progress of research in treatment of hyperlipidemia by monomer or compound recipe of Chinese herbal medicine,” Chinese Journal of Integrative Medicine, vol. 14, no. 1, pp. 71–75, 2008. View at Publisher · View at Google Scholar · View at PubMed
  49. X. Zhang, F. Zhou, Y. Yan, and L. Chen, “Determination of puerarin in radix Puerariae and yufengningxin tablets by HPLC,” China Journal of Chinese Materia Medica, vol. 20, no. 8, pp. 477–512, 1995. View at Google Scholar
  50. F. Ren, Q. Jing, Y. Shen, H. Ma, and J. Cui, “Quantitative determination of puerarin in dog plasma by HPLC and study on the relative bioavailability of sustained release tablets,” Journal of Pharmaceutical and Biomedical Analysis, vol. 41, pp. 549–553, 2006. View at Google Scholar
  51. J.-F. Wang, D.-Q. Wei, and K.-C. Chou, “Drug candidates from traditional Chinese medicines,” Current Topics in Medicinal Chemistry, vol. 8, no. 18, pp. 1656–1665, 2008. View at Publisher · View at Google Scholar
  52. M. Kox, J. F. van Velzen, J. C. Pompe, C. W. Hoedemaekers, J. G. van der Hoeven, and P. Pickkers, “GTS-21 inhibits pro-inflammatory cytokine release independent of the Toll-like receptor stimulated via a transcriptional mechanism involving JAK2 activation,” Biochemical Pharmacology, vol. 78, pp. 863–872, 2009. View at Google Scholar
  53. Z.-M. Liu, Y.-S. Yang, X.-L. Wang, and R.-X. Wen, “Recent progress on anti-HIV research of traditional Chinese medicine and components,” China Journal of Chinese Materia Medica, vol. 31, no. 21, pp. 1753–1758, 2006 (Chinese). View at Google Scholar
  54. H. Y. Zhang, C. Y. Zheng, H. Yan et al., “Potential therapeutic targets of huperzine A for Alzheimer's disease and vascular dementia,” Chemico-Biological Interactions, vol. 175, no. 1–3, pp. 396–402, 2008. View at Publisher · View at Google Scholar · View at PubMed
  55. J. T. Xu, L. Q. Wang, and B. Xu, “Research development of Coptis chinensis,” Acta Academiae Medicinae Sinicae, vol. 26, pp. 704–707, 2004 (Chinese). View at Google Scholar
  56. L. Leu and L. Mohassel, “Arsenic trioxide as first-line treatment for acute promyelocytic leukemia,” American Journal of Health-System Pharmacy, vol. 66, no. 21, pp. 1913–1918, 2009. View at Publisher · View at Google Scholar · View at PubMed
  57. G.-B. Zhou, J. Zhang, Z.-Y. Wang, S.-J. Chen, and Z. Chen, “Treatment of acute promyelocytic leukaemia with all-trans retinoic acid and arsenic trioxide: a paradigm of synergistic molecular targeting therapy,” Philosophical Transactions of the Royal Society B, vol. 362, no. 1482, pp. 959–971, 2007. View at Publisher · View at Google Scholar · View at PubMed
  58. C.-S. Jeong, H. N. Murthy, E.-J. Hahn, and K.-Y. Paek, “Improved production of ginsenosides in suspension cultures of ginseng by medium replenishment strategy,” Journal of Bioscience and Bioengineering, vol. 105, no. 3, pp. 288–291, 2008. View at Publisher · View at Google Scholar · View at PubMed
  59. Y.-S. Kim, E.-J. Hahn, H. N. Murthy, and K.-Y. Paek, “Adventitious root growth and ginsenoside accumulation in Panax ginseng cultures as affected by methyl jasmonate,” Biotechnology Letters, vol. 26, no. 21, pp. 1619–1622, 2004. View at Publisher · View at Google Scholar · View at PubMed
  60. J. Wu and J.-J. Zhong, “Production of ginseng and its bioactive components in plant cell culture: current technological and applied aspects,” Journal of Biotechnology, vol. 68, no. 2-3, pp. 89–99, 1999. View at Publisher · View at Google Scholar
  61. K. Vongpaseuth, E. Nims, M. St Amand, E. L. Walker, and S. C. Roberts, “Development of a particle bombardment-mediated transient transformation system for Taxus spp. cells in culture,” Biotechnology Progress, vol. 23, no. 5, pp. 1180–1185, 2007. View at Publisher · View at Google Scholar · View at PubMed
  62. H. Tabata, “Production of paclitaxel and the related taxanes by cell suspension cultures of Taxus species,” Current Drug Targets, vol. 7, no. 4, pp. 453–461, 2006. View at Publisher · View at Google Scholar
  63. Y. H. Li, X. Y. Lu, X. Liu, and Y. Liu, “Research advances in coordination chemistry of traditional Chinese medicine,” China Journal of Chinese Materia Medica, vol. 31, pp. 1309–1333, 2006 (Chinese). View at Google Scholar
  64. W. Z. Duan and J. T. Zhang, “Effects of (-), (+) clausenamide on central N-methyl-D-asparate receptors in rodents,” Acta Pharmacologica Sinica, vol. 32, pp. 259–263, 1997 (Chinese). View at Google Scholar
  65. W. Z. Duan and J. T. Zhang, “Effects of (-), (+)clausenamide on anisodine-induced acetylcholine decrease and associated memory deficits in the mouse brain,” Acta Pharmacologica Sinica, vol. 33, pp. 259–263, 1998 (Chinese). View at Google Scholar
  66. Y. Li and Y. L. Wu, “How chinese scientists discovered qinghaoso (artemisinin) and developed its derivatives ? What are the future perspectives ?” Medecine Tropicale, vol. 58, supplement 3, pp. 9–12, 1998. View at Google Scholar
  67. S. R. Meshnick, “Artemisinin antimalarials: mechanisms of action and resistance,” Medecine Tropicale, vol. 58, supplement 1, pp. 13–17, 1998. View at Google Scholar
  68. H. Y. Myint, E. A. Ashley, N. P. J. Day, F. Nosten, and N. J. White, “Efficacy and safety of dihydroartemisinin-piperaquine,” Transactions of the Royal Society of Tropical Medicine and Hygiene, vol. 101, no. 9, pp. 858–866, 2007. View at Publisher · View at Google Scholar · View at PubMed
  69. H. A. Karunajeewa, L. Manning, I. Mueller, K. F. Ilett, and T. M. E. Davis, “Rectal administration of artemisinin derivatives for the treatment of malaria,” Journal of the American Medical Association, vol. 297, no. 21, pp. 2381–2390, 2007. View at Publisher · View at Google Scholar · View at PubMed
  70. T. Efferth, “Mechanistic perspectives for 1,2,4-trioxanes in anti-cancer therapy,” Drug Resistance Updates, vol. 8, no. 1-2, pp. 85–97, 2005. View at Publisher · View at Google Scholar · View at PubMed
  71. E. Hsu, “The history of qing hao in the Chinese materia medica,” Transactions of the Royal Society of Tropical Medicine and Hygiene, vol. 100, no. 6, pp. 505–508, 2006. View at Publisher · View at Google Scholar · View at PubMed
  72. S. Turschner and T. Efferth, “Drug resistance in plasmodium: natural products in the fight against malaria,” Mini-Reviews in Medicinal Chemistry, vol. 9, no. 2, pp. 206–214, 2009. View at Publisher · View at Google Scholar
  73. G. T. Liu, “From the study of Fructus schizandrae to the discovery of biphenyl dimethyl-dicarboxylate,” Acta Pharmaceutica Sinica, vol. 18, no. 9, pp. 714–720, 1983 (Chinese). View at Google Scholar
  74. Y. Tang, W. Hu, Y. Li, and C. Z. Zhang, “Synthesis of metabolites of bicyclol,” Acta Pharmacologica Sinica, vol. 42, pp. 1054–1057, 2007 (Chinese). View at Google Scholar
  75. G. T. Liu, “Bicyclol: a novel drug for treating chronic viral hepatitis B and C,” Medicinal Chemistry, vol. 5, no. 1, pp. 29–43, 2009. View at Publisher · View at Google Scholar
  76. S. Cui, M. Wang, and G. Fan, “Anti-HBV efficacy of bifendate in treatment of chronic hepatitis B, a primary study,” Zhonghua yi Xue Za Zhi, vol. 82, no. 8, pp. 538–540, 2002. View at Google Scholar
  77. N. Akbar, R. A. G. Tahir, W. D. Santoso, et al., “Effectiveness of the analogue of natural Schisandrin C (HpPro) in treatment of liver diseases: an experience in Indonesian patients,” Chinese Medical Journal, vol. 111, no. 3, pp. 248–251, 1998. View at Google Scholar
  78. T. M. Ehrman, D. J. Barlow, and P. J. Hylands, “Phytochemical databases of Chinese herbal constituents and bioactive plant compounds with known target specificities,” Journal of Chemical Information and Modeling, vol. 47, no. 2, pp. 254–263, 2007. View at Publisher · View at Google Scholar · View at PubMed
  79. Q. Hu, M. Noor, Y. F. Wong et al., “In vitro anti-fibrotic activities of herbal compounds and herbs,” Nephrology Dialysis Transplantation, vol. 24, no. 10, pp. 3033–3041, 2009. View at Publisher · View at Google Scholar · View at PubMed
  80. Y. Zhuang, J. Yan, W. Zhu, L. Chen, D. Liang, and X. Xu, “Can the aggregation be a new approach for understanding the mechanism of Traditional Chinese Medicine?” Journal of Ethnopharmacology, vol. 117, no. 2, pp. 378–384, 2008. View at Publisher · View at Google Scholar · View at PubMed
  81. S. S. Lee, B. Zhang, M. L. He, V. S. C. Chang, and H. F. Kung, “Screening of active ingredients of herbal medicine for interaction with CYP450 3A4,” Phytotherapy Research, vol. 21, no. 11, pp. 1096–1099, 2007. View at Publisher · View at Google Scholar · View at PubMed
  82. Y. D. Yi and I. M. Chang, “An overview of traditional Chinese herbal formulae and a proposal of a new code system for expressing the formula titles,” Evidence-Based Complementary and Alternative Medicine, vol. 1, pp. 125–132, 2004. View at Google Scholar
  83. X. J. Wang, N. Zhang, Y. Sun, and W. H. Sun, “Preliminary study on serum pharmacochemistry of Liu Wei Di Huang Wan,” Chinese Journal of Natural Medicines, vol. 2, pp. 296–300, 2004 (Chinese). View at Google Scholar
  84. Y. Xia, Z. Li, D. Zhu, and Y. Yan, “A research on chemical dynamic changes and drug efficacy of SMS compound prescription: chemical researches on shenmaisan prescription (I),” China Journal of Chinese Materia Medica, vol. 23, pp. 230–1255, 1998 (Chinese). View at Google Scholar
  85. W. Jia, W.-Y. Gao, Y.-Q. Yan et al., “The rediscovery of ancient Chinese herbal formulas,” Phytotherapy Research, vol. 18, no. 8, pp. 681–686, 2004. View at Publisher · View at Google Scholar · View at PubMed
  86. S. D. Krämer and B. Testa, “The biochemistry of drug metabolism—an introduction—part 6. Inter-individual factors affecting drug metabolism,” Chemistry and Biodiversity, vol. 5, no. 12, pp. 2465–2578, 2008. View at Publisher · View at Google Scholar · View at PubMed
  87. B. Testa and S. D. Krämer, “The biochemistry of drug metabolism - An introduction: Part 4. Reactions of conjugation and their enzymes,” Chemistry and Biodiversity, vol. 5, no. 11, pp. 2171–2336, 2008. View at Publisher · View at Google Scholar · View at PubMed
  88. C. Antoniades, A. S. Antonopoulos, D. Tousoulis, C. Bakogiannis, E. Stefanadi, and C. Stefanadis, “Relationship between the pharmacokinetics of Levosimendan and its effects on cardiovascular system,” Current Drug Metabolism, vol. 10, no. 2, pp. 95–103, 2009. View at Publisher · View at Google Scholar
  89. C. Antoniades, D. Tousoulis, N. Koumallos, K. Marinou, and C. Stefanadis, “Levosimendan: beyond its simple inotropic effect in heart failure,” Pharmacology and Therapeutics, vol. 114, no. 2, pp. 184–197, 2007. View at Publisher · View at Google Scholar · View at PubMed
  90. R. Santen, E. Cavalieri, E. Rogan et al., “Estrogen mediation of breast tumor formation involves estrogen receptor-dependent, as well as independent, genotoxic effects,” Annals of the New York Academy of Sciences, vol. 1155, pp. 132–140, 2009. View at Publisher · View at Google Scholar · View at PubMed
  91. L. Han, “Current situation and consideration of pharmacokinetic study on multiple components of traditional Chinese medicine,” China Journal of Chinese Materia Medica, vol. 33, no. 21, pp. 2442–2448, 2008. View at Google Scholar
  92. A.-P. Lu, X.-R. Ding, and K.-J. Chen, “Current situation and progress in integrative medicine in China,” Chinese Journal of Integrative Medicine, vol. 14, no. 3, pp. 234–240, 2008. View at Publisher · View at Google Scholar · View at PubMed
  93. C. B. Wang, “Integrated TCM-WM research of viral hepatitis,” Chinese Journal of Integrative Medicine, vol. 8, pp. 152–156, 1988. View at Google Scholar
  94. E. A. Juma, C. O. Obonyo, W. S. Akhwale, and B. R. Ogutu, “A randomized, open-label, comparative efficacy trial of artemether-lumefantrine suspension versus artemether-lumefantrine tablets for treatment of uncomplicated Plasmodium falciparum malaria in children in western Kenya,” Malaria Journal, vol. 7, article no. 262, 2008. View at Publisher · View at Google Scholar · View at PubMed
  95. W. H. Wernsdorfer, “Coartemether (artemether and lumefantrin): an oral antimalarial drug,” Expert Review of Anti-Infective Therapy, vol. 2, no. 2, pp. 181–196, 2004. View at Publisher · View at Google Scholar · View at PubMed
  96. P. Camps and D. Muñoz-Torrero, “Tacrine-huperzine A hybrids (huprines): a new class of highly potent and selective acetylcholinesterase inhibitors of interest for the treatment of Alzheimer's disease,” Mini Reviews in Medicinal Chemistry, vol. 1, no. 2, pp. 163–174, 2001. View at Google Scholar
  97. A. Badia, J. E. Baños, P. Camps et al., “Synthesis and evaluation of tacrine-huperzine a hybrids as acetylcholinesterase inhibitors of potential interest for the treatment of Alzheimer's disease,” Bioorganic and Medicinal Chemistry, vol. 6, no. 4, pp. 427–440, 1998. View at Publisher · View at Google Scholar
  98. H. Yu, W.-M. Li, K. K. W. Kan et al., “The physicochemical properties and the in vivo AChE inhibition of two potential anti-Alzheimer agents, bis(12)-hupyridone and bis(7)-tacrine,” Journal of Pharmaceutical and Biomedical Analysis, vol. 46, no. 1, pp. 75–81, 2008. View at Publisher · View at Google Scholar · View at PubMed
  99. W. M. Li, K. K. W. Kan, P. R. Carlier, Y. P. Pang, and Y. F. Han, “East meets west in the search for Alzheimer's therapeutics—novel dimeric inhibitors from tacrine and huperzine A,” Current Alzheimer Research, vol. 4, no. 4, pp. 386–396, 2007. View at Publisher · View at Google Scholar
  100. X. H. Zheng, Y. C. Zhang, Q. Z. Zhang, and X. F. Zhao, “Synthesis and usage of Tanshinol borneol ester,” Patent no. ZL20060042787.3.
  101. L. Felicity, Bishop, and G. T. Lewith, “Who Uses CAM? A Narrative Review of Demographic Characteristics and Health Factors Associated with CAM Use,” Evidence-Based Complementary and Alternative Medicine, vol. 7, pp. 11–28, 2010. View at Google Scholar
  102. “United nations office on drug and crime,” Annual report 2008, http://www.unodc.org/documents/about-unodc/AR08_WEB.pdf.
  103. J. L. Hurwitz, X. Zhan, S. A. Brown et al., “HIV-1 vaccine development: tackling virus diversity with a multi-envelope cocktail,” Frontiers in Bioscience, vol. 13, no. 2, pp. 609–620, 2008. View at Publisher · View at Google Scholar
  104. S. Erdine, “Compliance with the treatment of hypertension: the potential of combination therapy,” The Journal of Clinical Hypertension, vol. 12, pp. 40–46, 2010. View at Google Scholar
  105. K. H. Lee, “Research and discovery trends of Chinese medicine in the new century,” Journal of Chinese Medicine, vol. 15, pp. 151–160, 2004. View at Google Scholar
  106. J.-T. Cheng, “Review: drug therapy in Chinese traditional medicine,” Journal of Clinical Pharmacology, vol. 40, no. 5, pp. 445–450, 2000. View at Google Scholar
  107. L. G. Guo, P. Zhang, L. L. Huang, and G. H. Xu, “Research progress on pharmacological action of Fructus Schisandrae Chinensis,” Acta Chinese Medicine and Pharmacology, vol. 34, pp. 51–53, 2006 (Chinese). View at Google Scholar
  108. S. Y. Pan, Z. L. Yu, H. Dong, C. J. Xiang, W. F. Fong, and K. M. Ko, “Ethanol extract of Fructus Schisandrae decreases hepatic triglyceride level in mice fed with a high fat/cholesterol diet, with attention to acute toxicity,” Evidence-Based Complementary and Alternative Medicine, 2009. View at Publisher · View at Google Scholar · View at PubMed
  109. S. Y. Pan, H. Dong, X. Y. Zhao, C. J. Xiang, H. Y. Fang, and W. F. Fong, “Schisandrin B from Schisandra chinensis reduces hepatic lipid contents in hypercholesterolaemic mice,” Journal of Pharmacy and Pharmacology, vol. 60, pp. 399–403, 2008. View at Google Scholar
  110. S. Y. Pan, R. Yang, H. Dong, Z. L. Yu, and K. M. Ko, “Bifendate treatment attenuates hepatic steatosis in cholesterol/bile salt- and high-fat diet-induced hypercholesterolemia in mice,” European Journal of Pharmacology, vol. 552, pp. 170–175, 2006. View at Google Scholar
  111. S. Y. Pan, H. Dong, Z. L. Yu, X. Y. Zhao, C. J. Xiang, and H. Wang, “Bicyclol, a synthetic dibenzocyclooctadiene derivative, decreases hepatic lipids but increases serum triglyceride level in normal and hypercholesterolaemic mice,” Journal of Pharmacy and Pharmacology, vol. 59, pp. 1657–1662, 2007. View at Google Scholar
  112. M. Wu and J. Wang, “Advance on study in anti-atherosclerosis mechanism of berberine,” China Journal of Chinese Materia Medica, vol. 33, pp. 2013–2016, 2008 (Chinese). View at Google Scholar
  113. L. Yuan, D. Tu, X. Ye, and J. Wu, “Hypoglycemic and hypocholesterolemic effects of Coptis chinensis franch inflorescence,” Plant Foods for Human Nutrition, vol. 61, pp. 139–144, 2006. View at Google Scholar
  114. B. Li, W. L. Zhu, and K. X. Chen, “Advances in the study of berberine and its derivatives,” Acta Pharmacologica Sinica, vol. 43, pp. 773–787, 2008 (Chinese). View at Google Scholar
  115. S. Y. Pan, H. Dong, Y. F. Han, W. Y. Li, X. Y. Zhao, and K. M. Ko, “A novel experimental model of acute hypertriglyceridemia induced by schisandrin B,” European Journal of Pharmacology, vol. 537, pp. 200–204, 2006. View at Google Scholar
  116. S. Y. Pan, R. Yang, Y. F. Han, H. Dong, X. D. Feng, and N. Li, “High doses of bifendate elevate serum and hepatic triglyceride levels in rabbits and mice: animal models of acute hypertriglyceridemia,” Acta Pharmacologica Sinica, vol. 27, pp. 673–678, 2006. View at Google Scholar
  117. X. Wang and R. Ma, “Fundamental research on effect of ginseng and its components on hematopoiesis and their clinical application,” Chinese Journal of Integrated Traditional Chinese and Western Medicine, vol. 26, pp. 1139–1141, 2006 (Chinese). View at Google Scholar
  118. K.-T. Choi, “Botanical characteristics, pharmacological effects and medicinal components of Korean Panax ginseng C A Meyer,” Acta Pharmacologica Sinica, vol. 29, no. 9, pp. 1109–1118, 2008. View at Publisher · View at Google Scholar · View at PubMed
  119. J. H. Wang, W. Li, Y. Sha, Y. Tezuka, S. Kadota, and X. Li, “Triterpenoid saponins from leaves and stems of Panax quinquefolium L,” Journal of Asian Natural Products Research, vol. 3, pp. 123–130, 2001. View at Google Scholar
  120. J. Chen, R. Zhao, Y. M. Zeng, H. Meng, W. J. Zuo, and X. Li, “Three new triterpenoid saponins from the leaves and stems of Panax quinquefolium,” Journal of Asian Natural Products Research, vol. 11, pp. 195–201, 2009. View at Google Scholar
  121. “Tea Culture,” 2009, http://baike.baidu.com/view/8263.html.
  122. C. Schneider and T. Segre, “Green tea: potential health benefits,” American Family Physician, vol. 79, no. 7, pp. 591–594, 2009. View at Google Scholar
  123. B. W. Bolling, C. Y. Chen, and J. B. Blumberg, “Tea and health: preventive and therapeutic usefulness in the elderly?” Current Opinion in Clinical Nutrition and Metabolic Care, vol. 12, pp. 42–48, 2009. View at Google Scholar
  124. Y. Clement, “Can green tea do that? A literature review of the clinical evidence,” Preventive Medicine, vol. 49, no. 2-3, pp. 83–87, 2009. View at Publisher · View at Google Scholar · View at PubMed
  125. S. Harima, M. Yoshikawa, and K. Tokuoka, “Historical consideration of tea trees and tea flowers, especially regarding the use of tea flowers as food,” Yakushigaku Zasshi, vol. 43, pp. 16–32, 2008, (in Japanese). View at Google Scholar
  126. “Tea Seed Oil,” 2009, http://en.wikipedia.org/wiki/Tea_seed_oil.
  127. V. Griffiths, “Eastern and Western paradigms: the holistic nature of traditional Chinese medicine,” The Australian Journal of Holistic Nursing, vol. 6, no. 2, pp. 35–38, 1999. View at Google Scholar
  128. H. Sharma, H. M. Chandola, G. Singh, and G. Basisht, “Utilization of Ayurveda in health care: an approach for prevention, health promotion, and treatment of disease—part 1—ayurveda, the science of life,” Journal of Alternative and Complementary Medicine, vol. 13, pp. 1011–1019, 2007. View at Google Scholar
  129. H. Sharma, H. M. Chandola, G. Singh, and G. Basisht, “Utilization of Ayurveda in health care: an approach for prevention, health promotion, and treatment of disease. Part 2-Ayurveda in primary health care,” Journal of Alternative and Complementary Medicine, vol. 13, pp. 1135–1150, 2007. View at Google Scholar
  130. H. Azaizeh, B. Saad, E. Cooper, and O. Said, “Traditional arabic and islamic medicine, a re-merging health aid,” Evidence-Based Complementary and Alternative Medicine, vol. 5, pp. 363–364, 2008. View at Google Scholar
  131. B. Saad, H. Azaizeh, and O. Said, “Tradition and perspectives of Arab herbal medicine: a review,” Evidence-Based Complementary and Alternative Medicine, vol. 2, no. 4, pp. 475–479, 2005. View at Publisher · View at Google Scholar · View at PubMed
  132. D. A. Kennedy, J. Hart, and D. Seely, “Cost effectiveness of natural health products: a systematic review of randomized clinical trials,” Evidence-Based Complementary and Alternative Medicine, vol. 6, no. 3, pp. 297–304, 2009. View at Publisher · View at Google Scholar · View at PubMed
  133. N. N. Jin and K. Ma, “Study of traditional Chinese medicine syndrome factors of dysfunctional uterine bleeding based on cluster analysis and factor analysis,” China Journal of Chinese Materia Medica, vol. 33, pp. 851–853, 2008 (Chinese). View at Google Scholar
  134. G. Wei and X. Zheng, “A survey of the studies on compatible law of ingredients in Chinese herbal prescriptions,” Journal of Traditional Chinese Medicine, vol. 28, pp. 223–227, 2008. View at Google Scholar
  135. L. C. Tapsell, I. Hemphill, L. Cobiac et al., “Health benefits of herbs and spices: the past, the present, the future,” The Medical Journal of Australia, vol. 185, no. 4, supplement, pp. S4–S24, 2006. View at Google Scholar
  136. M. R. Trusheim, E. R. Berndt, and F. L. Douglas, “Stratified medicine: strategic and economic implications of combining drugs and clinical biomarkers,” Nature Reviews Drug Discovery, vol. 6, pp. 287–293, 2007. View at Google Scholar
  137. H. S. Parekh, G. Liu, and Wei MQ, “A new dawn for the use of traditional Chinese medicine in cancer therapy,” Molecular Cancer, vol. 8, article no. 21, 2009. View at Publisher · View at Google Scholar · View at PubMed