About this Journal Submit a Manuscript Table of Contents
Evidence-Based Complementary and Alternative Medicine
Volume 2012 (2012), Article ID 142584, 11 pages
http://dx.doi.org/10.1155/2012/142584
Research Article

In Silico Syndrome Prediction for Coronary Artery Disease in Traditional Chinese Medicine

1Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
2Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, ChaoYang District, Beijing 100029, China

Received 11 November 2011; Revised 20 January 2012; Accepted 21 January 2012

Academic Editor: Hao Xu

Copyright © 2012 Peng Lu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. WHO; World Heart Federation, World Stroke Organization, Global Atlas on Cardiovascular Disease Prevention and Control, 2011.
  2. WHO, “Cardiovascular diseases (CVDs),” 2011.
  3. G. P. Liu, G. Z. Li, Y. L. Wang, and Y. Q. Wang, “Modelling of inquiry diagnosis for coronary heart disease in traditional Chinese medicine by using multi-label learning,” BMC Complementary and Alternative Medicine, p. 37, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. M. Jiuzhang and G. Lei, A General Introduction to Traditional Chinese Medicine, CRC Press, 2009.
  5. A. P. Lu, H. W. Jia, C. Xiao, and Q. P. Lu, “Theory of traditional chinese medicine and therapeutic method of diseases,” World Journal of Gastroenterology, vol. 10, no. 13, pp. 1854–1856, 2004. View at Scopus
  6. S. Li, Z. Q. Zhang, L. J. Wu, X. G. Zhang, Y. D. Li, and Y. Y. Wang, “Understanding ZHENG in traditional Chinese medicine in the context of neuro-endocrine-immune network,” IET Systems Biology, vol. 1, no. 1, pp. 51–60, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. C. D. Gu, The Inner Classic of the Yellow Emperor, Essential Questions (Huangdi Neijing, Suwen), People’s Medical Publishing House, Beijing, China, 1956.
  8. Y. Wang, L. Ma, and P. Liu, “Feature selection and syndrome prediction for liver cirrhosis in traditional Chinese medicine,” Computer Methods and Programs in Biomedicine, vol. 95, no. 3, pp. 249–257, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. S. Lukman, Y. He, and S. C. Hui, “Computational methods for traditional Chinese medicine: a survey,” Computer Methods and Programs in Biomedicine, vol. 88, no. 3, pp. 283–294, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. W. Jie, W. Rong, and Z. Xuezhong, “Syndrome factors based on SVM from coronary heart disease treated by prominent TCM doctors,” Journal of Beijing University of Traditional Chinese Medicine, vol. 08, 2008.
  11. X. Zhou, S. Chen, B. Liu et al., “Development of traditional Chinese medicine clinical data warehouse for medical knowledge discovery and decision support,” Artificial Intelligence in Medicine, vol. 48, no. 2-3, pp. 139–152, 2010. View at Publisher · View at Google Scholar
  12. J. Chen, G. Xi, J. Chen et al., “An unsupervised pattern (syndrome in traditional Chinese medicine) discovery algorithm based on association delineated by revised mutual information in chronic renal failure data,” Journal of Biological Systems, vol. 15, no. 4, pp. 435–451, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. B. Wang, M. W. Zhang, B. Zhang, and W. J. Wei, “Data mining application to syndrome differentiation in traditional Chinese medicine,” in Proceedings of the 7th International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT '06), pp. 128–131, December 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. H. L. Wu, C. Keji, X. M. Ruan, and W. J. Luo, “Cluster analysis on TCM syndromes in 319 coronary artery disease patients for establishment of syndrome diagnostic figure,” Chinese Journal of Integrated Traditional and Western Medicine, vol. 27, no. 7, pp. 616–618, 2007.
  15. X. J. Ma, H. J. Yin, and K. J. Chen, “Differential gene expression profiles in coronary heart disease patients of blood stasis syndrome in traditional Chinese medicine and clinical role of target gene,” Chinese Journal of Integrative Medicine, vol. 15, no. 2, pp. 101–106, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. W. Jie, X. Yanwei, C. Janxin, and G. Yonghong, “Discovering syndromes in Coronary Heart Disease by cluster algorithm based on random neural network,” in Proceedings of the 3rd International Conference on Bioinformatics and Biomedical Engineering (ICBBE '09), pp. 1–4, June 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. W. Xian, L. Zhong-Xiang, G. Jun-bo, Z. Zhen-Xian, and S. Lin, “Relationship between Traditional Chinese Medicine Syndrome type and coronary arteriography of acute coronary syndrome,” Chinese Journal of Integrative Medicine, vol. 9, pp. 116–119, 2003. View at Publisher · View at Google Scholar
  18. Z. Y. Gao, J. C. Zhang, H. Xu et al., “Analysis of relationships among syndrome, therapeutic treatment, and Chinese herbal medicine in patients with coronary artery disease based on complex networks,” Journal of Chinese Integrative Medicine, vol. 8, no. 3, pp. 238–243, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. Z. H. Jia, Y. S. Li, and Y. L. Wu, “Application of entropy-based complex systems partition method in research on quantizing TCM syndrome diagnostic criteria of angina pectoris,” Chinese Journal of Jntegrated Traditional and Western Medicine, vol. 27, no. 9, pp. 804–806, 2007. View at Scopus
  20. W. Zhong, Z. Boli, S. Chundi, C. Qiguang, and W. Yongyan, “Multivariate analysis of TCM syndrome of stroke,” Chinese Journal of Integrated Traditional And Western Medicine, vol. 23, no. 2, pp. 106–109, 2003.
  21. M. Shi and C. Zhou, “An approach to syndrome differentiation in traditional chinese medicine based on neural network,” in Proceedings of the 3rd International Conference on Natural Computation (ICNC '07), vol. 01, pp. 376–380, August 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. N. L. Zhang, S. Yuan, T. Chen, and Y. Wang, “Latent tree models and diagnosis in traditional Chinese medicine,” Artificial Intelligence in Medicine, vol. 42, no. 3, pp. 229–245, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. Y. Feng, Z. Wu, X. Zhou, Z. Zhou, and W. Fan, “Knowledge discovery in traditional Chinese medicine: state of the art and perspectives,” Artificial Intelligence in Medicine, vol. 38, no. 3, pp. 219–236, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. J. Chen, Y. Xing, G. Xi et al., Comparison of Four Data Mining Models: Bayes, Neural Network, SVM and Decision Trees in Identifying Syndromes in Coronary Heart Disease, Springer, Heidelberg, Germany, 2007.
  25. Y. Tu, G. Chen, S. Piao, and J. Guo, “Collection system implementation for four TCM diagnostic methods information of hyperlipemia and research on intelligent symptom classification algorithm,” in Advances in Intelligent and Soft Computing, D. Jin, S. Lin, D. Jin, and S. Lin, Eds., pp. 567–572, Springer, Heidelberg, Germany, 2011.
  26. K. Yao, L. Zhang, J. Wang, and J. Zhang, “Syndromes classification of the active stage of ankylosing spondylitis in traditional Chinese medicine by cluster analysis of symptoms and signs data,” in Communications in Computer and Information Science, L. Qi and L. Qi, Eds., pp. 657–663, Springer, Heidelberg, Germany, 2011.
  27. P. Cortez, “Data mining with multilayer perceptrons and support vector machines,” in DATA MINING: Foundations and Intelligent Paradigms, Volume 2: Core Topics including Statistical, Time-Series and Bayesian Analysis, D. Holmes and L. Jain, Eds., pp. 9–25, Springer, 2012.
  28. C. J. C. Burges, “A tutorial on support vector machines for pattern recognition,” Data Mining and Knowledge Discovery, vol. 2, no. 2, pp. 121–167, 1998. View at Scopus
  29. C. Chang and C. Lin, “LIBSVM: a library for support vector machines,” ACM Transactions on Intelligent Systems and Technology, vol. 2, pp. 1–27, 2011.
  30. J. Weston, S. Mukherjee, O. Chapelle, M. Pontil, T. Poggio, and V. Vapnik, “Feature selection for SVMs,” in Advances in Neural Information Processing Systems, pp. 668–674, MIT Press, 2000.
  31. I. Guyon and A. Elisseeff, “An introduction to variable and feature selection,” Journal of Machine Learning Research, vol. 3, pp. 1157–1182, 2003.
  32. J. Zhou, D. P. Foster, R. A. Stine, and L. H. Ungar, “Streamwise feature selection,” Journal of Machine Learning Research, vol. 7, pp. 1861–1885, 2006. View at Scopus
  33. R. Kohavi and G. H. John, “Wrappers for feature subset selection,” Artificial Intelligence, vol. 97, no. 1-2, pp. 273–324, 1997. View at Scopus
  34. Y. W. Chen and C. J. Lin, “Combining SVMs with various feature selection strategies,” Taiwan University, vol. 207, pp. 315–324, 2006. View at Scopus
  35. D. Koller and M. Sahami, “Toward optimal feature selection,” Tech. Rep., Stanford InfoLab, 1996.
  36. J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference San Mateo, Morgan Kaufmann, San Francisco, Calif, USA, 1988.
  37. Z. F. Cui, B. W. Xu, W. F. Zhang, and J. L. Xu, “Approximate Markov blanket feature selection algorithm,” Chinese Journal of Computers, vol. 30, no. 12, pp. 2074–2081, 2007. View at Scopus
  38. Z. Zhu, Y. S. Ong, and M. Dash, “Markov blanket-embedded genetic algorithm for gene selection,” Pattern Recognition, vol. 40, no. 11, pp. 3236–3248, 2007. View at Publisher · View at Google Scholar · View at Scopus
  39. N. Friedman, D. Geiger, and M. Goldszmidt, “Bayesian network classifiers,” Machine Learning, vol. 29, no. 2-3, pp. 131–163, 1997. View at Scopus
  40. A. Ouali, A. Ramdane Cherif, and M. O. Krebs, “Data mining based Bayesian networks for best classification,” Computational Statistics and Data Analysis, vol. 51, no. 2, pp. 1278–1292, 2006. View at Publisher · View at Google Scholar · View at Scopus
  41. I. H. Witten and E. Frank, Data Mining: Practical Machine Learning Tools and Techniques, Morgan Kaufmann, San Fransisco, Calif, USA, 2nd edition, 2005.
  42. R. B. Remco, Bayesian Network Classifiers in Weka, University of Waikato, 2004.
  43. M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten, “The WEKA data mining software: an update,” ACM SIGKDD Explorations Newsletter, vol. 11, no. 1, pp. 10–18, 2009.
  44. E. Frank, M. Hall, G. Holmes et al., “Weka-a machine learning workbench for data mining,” in Data Mining and Knowledge Discovery Handbook, O. Maimon, L. Rokach, O. Maimon, and L. Rokach, Eds., pp. 1269–1277, Springer, 2010.
  45. T. Fawcett, “An introduction to ROC analysis,” Pattern Recognition Letters, vol. 27, no. 8, pp. 861–874, 2006. View at Publisher · View at Google Scholar · View at Scopus
  46. J. A. Hanley and B. J. McNeil, “The meaning and use of the area under a receiver operating characteristic (ROC) curve,” Radiology, vol. 143, no. 1, pp. 29–36, 1982. View at Scopus
  47. T. Fawcett, “ROC graphs: notes and practical considerations for data mining researchers,” Tech. Rep., HP Laboratories, Palo Alto, Calif, USA, 2003.