About this Journal Submit a Manuscript Table of Contents
Evidence-Based Complementary and Alternative Medicine
Volume 2012 (2012), Article ID 161527, 7 pages
http://dx.doi.org/10.1155/2012/161527
Research Article

Two Different Isomers of Vitamin E Prevent Bone Loss in Postmenopausal Osteoporosis Rat Model

1Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia
2Department of Clinical Oral Biology, Faculty of Dentistry, Universiti Kebangsaan Malaysia, 50300 Kuala Lumpur, Malaysia

Received 13 July 2012; Accepted 15 September 2012

Academic Editor: Srijit Das

Copyright © 2012 Norliza Muhammad et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. M. Doran and S. Khosla, “Osteoporosis,” in Contemporary Endocrinology: Handbook of Diagnostic Endocrinology, J. E. Hall and L. K. Nieman, Eds., pp. 257–275, Humana Press, Totowa, NJ, USA, 2003.
  2. A. M. Parfitt, “Skeletal heterogeneity and the purposes of bone remodeling: implications for the understanding of osteoporosis,” in Osteoporosis, R. Marcus, D. Feldman, and J. Kelsey, Eds., pp. 433–447, Academic Press, San Diego, Calif, USA, 2nd edition, 2000.
  3. B. E. Bax, A. S. M. T. Alam, B. Banerji et al., “Stimulation of osteoclastic bone resorption by hydrogen peroxide,” Biochemical and Biophysical Research Communications, vol. 183, no. 3, pp. 1153–1158, 1992. View at Publisher · View at Google Scholar · View at Scopus
  4. I. R. Garrett, B. F. Boyce, R. O. C. Oreffo, L. Bonewald, J. Poser, and G. R. Mundy, “Oxygen-derived free radicals stimulate osteoclastic bone resorption in rodent bone in vitro and in vivo,” Journal of Clinical Investigation, vol. 85, no. 3, pp. 632–639, 1990. View at Scopus
  5. W. Dröge, “Free radicals in the physiological control of cell function,” Physiological Reviews, vol. 82, no. 1, pp. 47–95, 2002. View at Scopus
  6. S. Muthusami, I. Ramachandran, B. Muthusamy et al., “Ovariectomy induces oxidative stress and impairs bone antioxidant system in adult rats,” Clinica Chimica Acta, vol. 360, no. 1-2, pp. 81–86, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. J. M. Lean, J. T. Davies, K. Fuller et al., “A crucial role for thiol antioxidants in estrogen-deficiency bone loss,” Journal of Clinical Investigation, vol. 112, no. 6, pp. 915–923, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. M. Norazlina, S. Ima-Nirwana, M. T. A. Gapor, and B. A. Kadir Khalid, “Tocotrienols are needed for normal bone calcification in growing female rats,” Asia Pacific Journal of Clinical Nutrition, vol. 11, no. 3, pp. 194–199, 2002. View at Publisher · View at Google Scholar · View at Scopus
  9. J. Difford, “A simplified method for the preparation of methyl methacrylate embedding medium for undecalcified bone,” Medical Laboratory Technology, vol. 31, no. 1, pp. 79–81, 1974. View at Scopus
  10. A. M. Parfitt, M. K. Drezner, F. H. Glorieux et al., “Bone histomorphometry: standardization of nomenclature, symbols, and units. Report of the ASBMR Histomorphometry Nomenclature Committee,” Journal of Bone and Mineral Research, vol. 2, no. 6, pp. 595–610, 1987. View at Scopus
  11. K. Kippo, R. Hannuniemi, T. Virtamo et al., “The effects of clodronate on increased bone turnover and bone loss due to ovariectomy in rats,” Bone, vol. 17, no. 6, pp. 533–542, 1995. View at Publisher · View at Google Scholar · View at Scopus
  12. T. Tanizawa, A. Yamaguchi, Y. Uchiyama et al., “Reduction in bone formation and elevated bone resorption in ovariectomized rats with special reference to acute inflammation,” Bone, vol. 26, no. 1, pp. 43–53, 2000. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Cnop, M. J. Landchild, J. Vidal et al., “The concurrent accumulation of intra-abdominal and subcutaneous fat explains the association between insulin resistance and plasma leptin concentrations: distinct metabolic effects of two fat compartments,” Diabetes, vol. 51, no. 4, pp. 1005–1015, 2002. View at Scopus
  14. J. S. Mayes and G. H. Watson, “Direct effects of sex steroid hormones on adipose tissues and obesity,” Obesity Reviews, vol. 5, no. 4, pp. 197–216, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. D. N. Kalu, “The ovariectomized rat model of postmenopausal bone loss,” Bone and Mineral, vol. 15, no. 3, pp. 175–191, 1991. View at Publisher · View at Google Scholar · View at Scopus
  16. T. J. Wronski and C. F. Yen, “The ovariectomized rat as an animal model for postmenopausal bone loss,” Cells and Materials, Supplement 1, pp. 69–74, 1991.
  17. S. Ima-Nirwana, M. Norazlina, and B. A. K. Khalid, “Pattern of bone mineral density in growing male and female rats after gonadectomy,” Journal of the ASEAN Federation of Endocrine Society, vol. 16, pp. 21–26, 1998.
  18. S. Ayres, W. Abplanalp, J. H. Liu, and M. T. R. Subbiah, “Mechanisms involved in the protective effect of estradiol-17β on lipid peroxidation and DNA damage,” American Journal of Physiology, vol. 274, no. 6, pp. E1002–E1008, 1998. View at Scopus
  19. H. M. Frost and W. S. S. Jee, “On the rat model of human osteopenias and osteoporoses,” Bone and Mineral, vol. 18, no. 3, pp. 227–236, 1992. View at Publisher · View at Google Scholar · View at Scopus
  20. N. A. Sims, H. A. Morris, R. J. Moore, and T. C. Durbridge, “Increased bone resorption precedes increased bone formation in the ovariectomized rat,” Calcified Tissue International, vol. 59, no. 2, pp. 121–127, 1996. View at Publisher · View at Google Scholar · View at Scopus
  21. A. Gal-Moscovici, M. Gal, and M. M. Popovtzer, “Treatment of osteoporotic ovariectomized rats with 24,25(OH) 2D3,” European Journal of Clinical Investigation, vol. 35, no. 6, pp. 375–379, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. D. W. Dempster, R. Birchman, R. Xu, R. Lindsay, and V. Shen, “Temporal changes in cancellous bone structure of rats immediately after ovariectomy,” Bone, vol. 16, no. 1, pp. 157–161, 1995. View at Publisher · View at Google Scholar · View at Scopus
  23. E. Seeman, “Pathogenesis of bone fragility in women and men,” The Lancet, vol. 359, no. 9320, pp. 1841–1850, 2002. View at Publisher · View at Google Scholar · View at Scopus
  24. B. L. Clarke and S. Khosla, “Physiology of bone loss,” Radiologic Clinics of North America, vol. 48, no. 3, pp. 483–495, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. W. Dröge, “Free radicals in the physiological control of cell function,” Physiological Reviews, vol. 82, no. 1, pp. 47–95, 2002. View at Scopus
  26. M. Almeida, L. Han, E. Ambrogini, S. M. Bartell, and S. C. Manolagas, “Oxidative stress stimulates apoptosis and activates NF-κB in osteoblastic cells via a PKCβ/p66shc signaling cascade: counter regulation by estrogens or androgens,” Molecular Endocrinology, vol. 24, no. 10, pp. 2030–2037, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. H. Hermizi, O. Faizah, S. Ima-Nirwana, S. Ahmad Nazrun, and M. Norazlina, “Beneficial effects of tocotrienol and tocopherol on bone histomorphometric parameters in Sprague-Dawley male rats after nicotine cessation,” Calcified Tissue International, vol. 84, no. 1, pp. 65–74, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. A. N. Shuid, Z. Mehat, N. Mohamed, N. Muhammad, and I. N. Soelaiman, “Vitamin E exhibits bone anabolic actions in normal male rats,” Journal of Bone and Mineral Metabolism, vol. 28, no. 2, pp. 149–156, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. M. Norazlina, C. W. Chua, and S. Ima-Nirwana, “Vitamin E deficiency reduced lumbar bone calcium content in female rats,” Medical Journal of Malaysia, vol. 59, no. 5, pp. 623–630, 2004. View at Scopus
  30. E. Serbinova, V. Kagan, D. Han, and L. Packer, “Free radical recycling and intramembrane mobility in the antioxidant properties of alpha-tocopherol and alpha-tocotrienol,” Free Radical Biology and Medicine, vol. 10, no. 5, pp. 263–275, 1991. View at Publisher · View at Google Scholar · View at Scopus
  31. J. P. Kamat, H. D. Sarma, T. R. A. Devasagayam, K. Nesaretnam, and Y. Basiron, “Tocotrienols from palm oil as effective inhibitors of protein oxidation and lipid peroxidation in rat liver microsomes,” Molecular and Cellular Biochemistry, vol. 170, no. 1-2, pp. 131–137, 1997. View at Publisher · View at Google Scholar · View at Scopus
  32. S. Maniam, N. Mohamed, A. N. Shuid, and I. N. Soelaiman, “Palm tocotrienol exerted better antioxidant activities in bone than α-tocopherol,” Basic and Clinical Pharmacology and Toxicology, vol. 103, no. 1, pp. 55–60, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. N. S. Ahmad, B. A. K. Khalid, D. A. Luke, and S. I. Nirwana, “Tocotrienol offers better protection than tocopherol from free radical-induced damage of rat bone,” Clinical and Experimental Pharmacology and Physiology, vol. 32, no. 9, pp. 761–770, 2005. View at Publisher · View at Google Scholar · View at Scopus
  34. H. Nakamura, F. Furukawa, A. Nishikawa et al., “Oral toxicity of a tocotrienol preparation in rats,” Food and Chemical Toxicology, vol. 39, no. 8, pp. 799–805, 2001. View at Publisher · View at Google Scholar · View at Scopus
  35. J. H. Lee, H. N. Kim, D. Yang et al., “Trolox prevents osteoclastogenesis by suppressing RANKL expression and signaling,” Journal of Biological Chemistry, vol. 284, no. 20, pp. 13725–13734, 2009. View at Publisher · View at Google Scholar · View at Scopus
  36. H. Ha, J. H. Lee, H. N. Kim, and Z. H. Lee, “α-Tocotrienol inhibits osteoclastic bone resorption by suppressing RANKL expression and signaling and bone resorbing activity,” Biochemical and Biophysical Research Communications, vol. 406, no. 4, pp. 546–551, 2011. View at Publisher · View at Google Scholar · View at Scopus