About this Journal Submit a Manuscript Table of Contents
Evidence-Based Complementary and Alternative Medicine
Volume 2012 (2012), Article ID 250584, 14 pages
http://dx.doi.org/10.1155/2012/250584
Review Article

Vitamin E and Bone Structural Changes: An Evidence-Based Review

Pharmacoepidemiology and Drug Safety Unit, Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia (The National University of Malaysia), Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia

Received 5 June 2012; Accepted 7 September 2012

Academic Editor: Srijit Das

Copyright © 2012 Isa Naina Mohamed et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. National Osteoporosis Foundation, 2012, http://www.nof.org/aboutosteoporosis/bonebasics/whybonehealth.
  2. D. A. Stevens and G. R. Williams, “Hormone regulation of chondrocyte differentiation and endochondral bone formation,” Molecular and Cellular Endocrinology, vol. 151, no. 1-2, pp. 195–204, 1999. View at Publisher · View at Google Scholar · View at Scopus
  3. S. L. Teitelbaum, “Bone resorption by osteoclasts,” Science, vol. 289, no. 5484, pp. 1504–1508, 2000. View at Publisher · View at Google Scholar · View at Scopus
  4. S. Roux and P. Orcel, “Bone loss: factors that regulate osteoclast differentiation,” Arthritis Research & Therapy, vol. 2, no. 6, pp. 451–456, 2000. View at Publisher · View at Google Scholar · View at Scopus
  5. World Health Organisation, 2012, http://www.who.int/chp/topics/Osteoporosis.pdf/.
  6. S. Muthusami, I. Ramachandran, B. Muthusamy et al., “Ovariectomy induces oxidative stress and impairs bone antioxidant system in adult rats,” Clinica Chimica Acta, vol. 360, no. 1-2, pp. 81–86, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. N. Suda, I. Morita, T. Kuroda, and S. I. Murota, “Participation of oxidative stress in the process of osteoclast differentiation,” Biochimica et Biophysica Acta, vol. 1157, no. 3, pp. 318–323, 1993. View at Scopus
  8. S. Yang, P. Madyastha, S. Bingel, W. Ries, and L. Key, “A new superoxide-generating oxidase in murine osteoclasts,” The Journal of Biological Chemistry, vol. 276, no. 8, pp. 5452–5458, 2001. View at Publisher · View at Google Scholar · View at Scopus
  9. Z. Khalkhali-Ellis, P. Collin-Osdoby, L. Li, M. L. Brandi, and P. Osdoby, “A human homolog of the 150 kD avian osteoclast membrane antigen related to superoxide dismutase and essential for bone resorption is induced by developmental agents and opposed by estrogen in FLG 29.1 cells,” Calcified Tissue International, vol. 60, no. 2, pp. 187–193, 1997. View at Publisher · View at Google Scholar · View at Scopus
  10. R. J. Van't Hof and S. H. Ralston, “Nitric oxide and bone,” Immunology, vol. 103, no. 3, pp. 255–261, 2001. View at Publisher · View at Google Scholar · View at Scopus
  11. S. Basu, K. Michaëlsson, H. Olofsson, S. Johansson, and H. Melhus, “Association between oxidative stress and bone mineral density,” Biochemical and Biophysical Research Communications, vol. 288, no. 1, pp. 275–279, 2001. View at Publisher · View at Google Scholar · View at Scopus
  12. S. Yalin, S. Bagis, G. Polat et al., “Is there a role of free oxygen radicals in primary male osteoporosis?” Clinical and Experimental Rheumatology, vol. 23, no. 5, pp. 689–692, 2005. View at Scopus
  13. E. Serbinova, V. Kagan, D. Han, and L. Packer, “Free radical recycling and intramembrane mobility in the antioxidant properties of α-tocopherol and alpha-tocotrienol,” Free Radical Biology and Medicine, vol. 10, no. 5, pp. 263–275, 1991. View at Publisher · View at Google Scholar · View at Scopus
  14. A. Kamal-Eldin and L. A. Appelqvist, “The chemistry and antioxidant properties of tocopherols and tocotrienols,” Lipids, vol. 31, no. 7, pp. 671–701, 1996. View at Scopus
  15. L. Packer, S. U. Weber, and G. Rimbach, “Molecular aspects of α-tocotrienol antioxidant action and cell signalling,” Journal of Nutrition, vol. 131, no. 2, pp. 369S–373S, 2001. View at Scopus
  16. Y. Yoshida, E. Niki, and N. Noguchi, “Comparative study on the action of tocopherols and tocotrienols as antioxidant: chemical and physical effects,” Chemistry and Physics of Lipids, vol. 123, no. 1, pp. 63–75, 2003. View at Publisher · View at Google Scholar · View at Scopus
  17. C. K. Sen, S. Khanna, S. Roy, and L. Packer, “Molecular basis of vitamin E action: tocotrienol potently inhibits glutamate-induced pp60c-src kinase activation and death of HT4 neuronal cells,” The Journal of Biological Chemistry, vol. 275, no. 17, pp. 13049–13055, 2000. View at Publisher · View at Google Scholar · View at Scopus
  18. A. Azzi and A. Stocker, “Vitamin E: non-antioxidant roles,” Progress in Lipid Research, vol. 39, no. 3, pp. 231–255, 2000. View at Publisher · View at Google Scholar · View at Scopus
  19. M. G. Traber, “Vitamin E regulatory mechanisms,” Annual Review of Nutrition, vol. 27, pp. 347–362, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. K. M. Fairfield and R. H. Fletcher, “Vitamins for chronic disease prevention in adults: scientific review,” The Journal of the American Medical Association, vol. 287, no. 23, pp. 3116–3126, 2002. View at Scopus
  21. M. Arita, Y. Sato, A. Miyata et al., “Human α-tocopherol transfer protein: cDNA cloning, expression and chromosomal localization,” Biochemical Journal, vol. 306, no. 2, pp. 437–443, 1995. View at Scopus
  22. A. Hosomi, M. Arita, Y. Sato et al., “Affinity for α-tocopherol transfer protein as a determinant of the biological activities of vitamin E analogs,” FEBS Letters, vol. 409, no. 1, pp. 105–108, 1997. View at Publisher · View at Google Scholar · View at Scopus
  23. C. E. Elson, “Tropical oils: nutritional and scientific issues,” Critical Reviews in Food Science and Nutrition, vol. 31, no. 1-2, pp. 79–102, 1992. View at Scopus
  24. J. P. Kamat and T. P. A. Devasagayam, “Tocotrienols from palm oil as potent inhibitors of lipid peroxidation and protein oxidation in rat brain mitochondria,” Neuroscience Letters, vol. 195, no. 3, pp. 179–182, 1995. View at Publisher · View at Google Scholar · View at Scopus
  25. J. P. Kamat, H. D. Sarma, T. R. A. Devasagayam, K. Nesaretnam, and Y. Basiron, “Tocotrienols from palm oil as effective inhibitors of protein oxidation and lipid peroxidation in rat liver microsomes,” Molecular and Cellular Biochemistry, vol. 170, no. 1-2, pp. 131–138, 1997. View at Publisher · View at Google Scholar · View at Scopus
  26. M. Norazlina, P. L. Lee, H. I. Lukman, A. S. Nazrun, and S. Ima-Nirwana, “Effects of vitamin E supplementation on bone metabolism in nicotine-treated rats,” Singapore Medical Journal, vol. 48, no. 3, pp. 195–199, 2007. View at Scopus
  27. A. Azzi, I. Breyer, M. Feher et al., “Specific cellular responses to α-tocopherol,” Journal of Nutrition, vol. 130, no. 7, pp. 1649–1652, 2000. View at Scopus
  28. R. Ricciarelli, J. M. Zingg, and A. Azzi, “Vitamin E: protective role of a janus molecule,” The FASEB Journal, vol. 15, no. 13, pp. 2314–2325, 2001. View at Publisher · View at Google Scholar · View at Scopus
  29. M. Passeri and D. Provvedini, “Vitamin E in the physiopathology of the elderly,” Acta Vitaminologica et Enzymologica, vol. 5, no. 1, pp. 53–63, 1983. View at Scopus
  30. H. Xu, B. A. Watkins, and M. F. Seifert, “Vitamin E stimulates trabecular bone formation and alters epiphyseal cartilage morphometry,” Calcified Tissue International, vol. 57, no. 4, pp. 293–300, 1995. View at Publisher · View at Google Scholar · View at Scopus
  31. S. Ima-Nirwana, A. Kiftiah, A. G. Zainal, M. Norazlina, M. T. Gapor, and B. A. K. Khalid, “Palm vitamin E prevents osteoporosis in orchidectomized growing male rats,” Natural Product Sciences, vol. 6, no. 4, pp. 155–160, 2000. View at Scopus
  32. M. Norazlina, S. Ima-Nirwana, M. T. Gapor, and B. A. K. Khalid, “Palm vitamin E is comparable to α-tocopherol in maintaining bone mineral density in ovariectomised female rats,” Experimental and Clinical Endocrinology and Diabetes, vol. 108, no. 4, pp. 305–310, 2000. View at Publisher · View at Google Scholar · View at Scopus
  33. N. S. Ahmad, B. A. K. Khalid, and S. Ima-Nirwana, “Effects of vitamin E on interleukin-1 in ferric-nitrilotriacetate treated rats,” Malaysian Journal Biochemistry and Biology, vol. 9, pp. 43–47, 2004.
  34. N. S. Ahmad, B. A. K. Khalid, D. A. Luke, and S. Ima-Nirwana, “Tocotrienol offers better protection than tocopherol from free radical-induced damage of rat bone,” Clinical and Experimental Pharmacology & Physiology, vol. 32, no. 9, pp. 761–770, 2005. View at Publisher · View at Google Scholar · View at Scopus
  35. J. K. Yee and S. Ima-Nirwana, “Palm vitamin E protects against ferric-nitriltrioacetate-induced impairment of bone calcification,” Asia Pacific Journal of Pharmacology, vol. 13, no. 1, pp. 35–41, 1998. View at Scopus
  36. D. N. Kalu, C. C. Liu, R. R. Hardin, and B. W. Hollis, “The aged rat model of ovarian hormone deficiency bone loss,” Endocrinology, vol. 124, no. 1, pp. 7–16, 1989. View at Scopus
  37. B. H. Arjmandi, S. Juma, A. Beharka, M. S. Bapna, M. Akhter, and S. N. Meydani, “Vitamin E improves bone quality in the aged but not in young adult male mice,” Journal of Nutritional Biochemistry, vol. 13, no. 9, pp. 543–549, 2002. View at Publisher · View at Google Scholar · View at Scopus
  38. B. H. Arjmandi, M. P. Akhter, D. Chakkalakal et al., “Effects of isoflavones, vitamin E, and their combination on bone in an aged rat model of osteopenia,” Journal of Bone Mineral Research, vol. 16, article S553, 2001.
  39. P. D. Broulik, J. Rosenkrancová, P. Růžička, R. Sedláček, and I. Kurcová, “The effect of chronic nicotine administration on bone mineral content and bone strength in normal and castrated male rats,” Hormone and Metabolic Research, vol. 39, no. 1, pp. 20–24, 2007. View at Publisher · View at Google Scholar · View at Scopus
  40. R. G. Cooper and T. Magwere, “Nitric oxide-mediated pathogenesis during nicotine and alcohol consumption,” Indian Journal of Physiology and Pharmacology, vol. 52, no. 1, pp. 11–18, 2008. View at Scopus
  41. M. A. Fang, P. J. Frost, A. Iida-Klein, and T. J. Hahn, “Effects of nicotine on cellular function in UMR 106-01 osteoblast-like cells,” Bone, vol. 12, no. 4, pp. 283–286, 1991. View at Publisher · View at Google Scholar · View at Scopus
  42. R. Chapurlat, “Epidemiology of osteoporosis,” Journal Society Biology, vol. 202, no. 4, pp. 251–255, 2008. View at Publisher · View at Google Scholar · View at Scopus
  43. D. Kapoor and T. H. Jones, “Smoking and hormones in health and endocrine disorders,” European Journal of Endocrinology, vol. 152, no. 4, pp. 491–499, 2005. View at Publisher · View at Google Scholar · View at Scopus
  44. H. Hermizi, O. Faizah, S. Ima-Nirwana, S. A. Nazrun, and M. Norazlina, “Beneficial effects of tocotrienol and tocopherol on bone histomorphometric parameters in sprague-dawley male rats after nicotine cessation,” Calcified Tissue International, vol. 84, no. 1, pp. 65–74, 2009. View at Publisher · View at Google Scholar · View at Scopus
  45. C. R. Kessenich, “Calcium and vitamin D supplementation for postmenopausal bone health,” Journal for Nurse Practitioners, vol. 3, no. 3, pp. 155–159, 2007. View at Publisher · View at Google Scholar · View at Scopus
  46. T. Imai, M. Omoto, K. Seki, and T. Harada, “The effects of long-term intake of restricted calcium, vitamin D, and vitamin E and cadmium-added diets on various organs and bones of mice: a histological and the roentgenological study,” Japanese Journal of Hygiene, vol. 50, no. 2, pp. 660–682, 1995. View at Scopus
  47. I. N. Sergeev, I. P. Arkhapchev, and V. B. Spirichev, “The role of vitamin E in the metabolism and reception of vitamin D,” Biokhimiya, vol. 55, no. 11, pp. 1989–1995, 1990. View at Scopus
  48. M. Norazlina, S. Ima-Nirwana, M. T. A. Gapor, and B. A. K. Khalid, “Tocotrienols are needed for normal bone calcification in growing female rats,” Asia Pacific Journal of Clinical Nutrition, vol. 11, no. 3, pp. 194–199, 2002. View at Publisher · View at Google Scholar · View at Scopus
  49. M. Norazlina, H. L. R. Ling, and S. Ima-Nirwana, “The effects of vitamin E or calcium supplementation on bone mineral composition in vitamin E deficient rats,” Malaysian Journal of Biochemistry and Molecular Biology, vol. 7, pp. 1–5, 2002.
  50. H. Bismar, I. Diel, R. Ziegler, and J. Pfeilschifter, “Increased cytokine secretion by human bone marrow cells after menopause or discontinuation of estrogen replacement,” Journal of Clinical Endocrinology and Metabolism, vol. 80, no. 11, pp. 3351–3355, 1995. View at Scopus
  51. M. E. Cohen-Solal, A. M. Graulet, M. A. Denne, J. Gueris, D. Baylink, and M. C. de Vernejoul, “Peripheral monocyte culture supernatants of menopausal women can induce bone resorption: involvement of cytokines,” Journal of Clinical Endocrinology and Metabolism, vol. 77, no. 6, pp. 1648–1653, 1993. View at Publisher · View at Google Scholar · View at Scopus
  52. R. Pacifici, C. Brown, E. Puscheck et al., “Effect of surgical menopause and estrogen replacement on cytokine release from human blood mononuclear cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 88, no. 12, pp. 5134–5138, 1991. View at Publisher · View at Google Scholar · View at Scopus
  53. M. C. Horowitz, “Cytokines and estrogen in bone: anti-osteoporotic effects,” Science, vol. 260, no. 5108, pp. 626–627, 1993. View at Scopus
  54. S. Ima-Nirwana and S. Suhaniza, “Effects of tocopherols and tocotrienols on body composition and bone calcium content in adrenalectomized rats replaced with dexamethasone,” Journal of Medicinal Food, vol. 7, no. 1, pp. 45–51, 2004. View at Publisher · View at Google Scholar · View at Scopus
  55. B. J. Smith, E. A. Lucas, R. T. Turner et al., “Vitamin E provides protection for bone in mature hindlimb unloaded male rats,” Calcified Tissue International, vol. 76, no. 4, pp. 272–279, 2005. View at Publisher · View at Google Scholar · View at Scopus
  56. S. C. Chai, C. I. Wei, K. B. Smith, and B. H. Arjmandi, “The role of vitamin E in reversing bone loss,” Aging Clinical and Experimental Research, vol. 20, no. 6, pp. 521–527, 2008. View at Scopus
  57. A. N. Shuid, Z. Mehat, N. Mohamed, N. Muhammad, and I. N. Soelaiman, “Vitamin E exhibits bone anabolic actions in normal male rats,” Journal of Bone and Mineral Metabolism, vol. 28, no. 2, pp. 149–156, 2010. View at Publisher · View at Google Scholar · View at Scopus
  58. M. Z. Mehat, A. N. Shuid, N. Mohamed, N. Muhammad, and I. N. Soelaiman, “Beneficial effects of vitamin e isomer supplementation on static and dynamic bone histomorphometry parameters in normal male rats,” Journal of Bone and Mineral Metabolism, vol. 28, no. 5, pp. 503–509, 2010. View at Publisher · View at Google Scholar · View at Scopus
  59. D. Maggio, M. Barabani, M. Pierandrei et al., “Marked decrease in plasma antioxidants in aged osteoporotic women: results of a cross-sectional study,” Journal of Clinical Endocrinology and Metabolism, vol. 88, no. 4, pp. 1523–1527, 2003. View at Publisher · View at Google Scholar · View at Scopus
  60. H. M. Macdonald, S. A. New, M. H. N. Golden, M. K. Campbell, and D. M. Reid, “Nutritional associations with bone loss during the menopausal transition: evidence of a beneficial effect of calcium, alcohol, and fruit and vegetable nutrients and of a detrimental effect of fatty acids,” American Journal of Clinical Nutrition, vol. 79, no. 1, pp. 155–165, 2004. View at Scopus
  61. R. L. Wolf, J. A. Cauley, M. Pettinger et al., “Lack of a relation between vitamin and mineral antioxidants and bone mineral density: results from the women's health initiative,” American Journal of Clinical Nutrition, vol. 82, no. 3, pp. 581–588, 2005. View at Scopus
  62. P. D. Delmas, “Biochemical markers for the assessment of bone turnover,” in Osteoporosis: Etiology, Diagnosis and Management, pp. 319–333, Lippincott-Raven, Philadelphia, Pa, USA, 2nd edition, 1995.