About this Journal Submit a Manuscript Table of Contents
Evidence-Based Complementary and Alternative Medicine
Volume 2012 (2012), Article ID 298320, 9 pages
http://dx.doi.org/10.1155/2012/298320
Research Article

Mitochondria Superoxide Anion Production Contributes to Geranylgeraniol-Induced Death in Leishmania amazonensis

1Programa de Pós-graduação em Ciências Farmacêuticas, Laboratório de Inovação Tecnológica no Desenvolvimento de Fármacos e Cosméticos, Bloco B-08, Universidade Estadual de Maringá, Avenida Colombo 5790, 87020-900 Maringá, PR, Brazil
2Programa de Pós-graduação em Ciências Biológicas, Universidade Estadual de Maringá, Avenida Colombo 5790, 87020-900 Maringá, PR, Brazil

Received 5 September 2012; Revised 31 October 2012; Accepted 6 November 2012

Academic Editor: Veronique Seidel

Copyright © 2012 Milene Valéria Lopes et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. World Health Organization, “Report on the scientific working group on leishmaniasis,” February 2004, http://www.who.int/tdr/.
  2. D. C. Soares, C. G. Pereira, M. Meireles, and E. M. Saraiva, “Leishmanicidal activity of a supercritical fluid fraction obtained from Tabernaemontana catharinensis,” Parasitology International, vol. 56, no. 2, pp. 135–139, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. H. Goto and J. A. L. Lindoso, “Current diagnosis and treatment of cutaneous and mucocutaneous leishmaniasis,” Expert Review of Anti-Infective Therapy, vol. 8, no. 4, pp. 419–433, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. L. E. da Silva, A. C. Joussef, L. K. Pacheco, D. G. da Silva, M. Steindel, and R. A. Rebelo, “Synthesis and in vitro evaluation of leishmanicidal and trypanocidal activities of N-quinolin-8-yl-arylsulfonamides,” Bioorganic and Medicinal Chemistry, vol. 15, no. 24, pp. 7553–7560, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. T. S. Tiuman, T. Ueda-Nakamura, D. A. Cortez et al., “Antileishmanial activity of parthenolide, a sesquiterpene lactone isolated from Tanacetum parthenium,” Antimicrobial Agents and Chemotherapy, vol. 49, no. 1, pp. 176–182, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. T. Ueda-Nakamura, R. R. Mendonça-Filho, J. A. Morgado-Díaz et al., “Antileishmanial activity of Eugenol-rich essential oil from Ocimum gratissimum,” Parasitology International, vol. 55, no. 2, pp. 99–105, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. E. Izumi, L. G. Morello, T. Ueda-Nakamura et al., “Trypanosoma cruzi: antiprotozoal activity of parthenolide obtained from Tanacetum parthenium (L.) Schultz Bip. (Asteraceae, Compositae) against epimastigote and amastigote forms,” Experimental Parasitology, vol. 118, no. 3, pp. 324–330, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. A. O. Santos, T. Ueda-Nakamura, B. P. D. Filho, V. F. Veiga Junior, and C. V. Nakamura, “Copaiba oil: an alternative to development of new drugs against Leishmaniasis,” Evidence-Based Complementary and Alternative Medicine, vol. 2012, 7 pages, 2012.
  9. A. Cáceres, H. Menéndez, E. Méndez et al., “Antigonorrhoeal activity of plants used in Guatemala for the treatment of sexually transmitted diseases,” Journal of Ethnopharmacology, vol. 48, no. 2, pp. 85–88, 1995. View at Publisher · View at Google Scholar · View at Scopus
  10. R. Villar, J. M. Calleja, C. Morales, and A. Cáceres, “Screening of 17 Guatemalan medicinal plants for platelet antiaggregant activity,” Phytotherapy Research, vol. 11, no. 6, pp. 441–445, 1997.
  11. J. A. Shilpi, M. Taufiq-Ur-Rahman, S. J. Uddin, M. S. Alam, S. K. Sadhu, and V. Seidel, “Preliminary pharmacological screening of Bixa orellana L. leaves,” Journal of Ethnopharmacology, vol. 108, no. 2, pp. 264–271, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. F. G. Braga, M. L. M. Bouzada, R. L. Fabri et al., “Antileishmanial and antifungal activity of plants used in traditional medicine in Brazil,” Journal of Ethnopharmacology, vol. 111, no. 2, pp. 396–402, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. I. J. O. Jondiko and G. Pattenden, “Terpenoids and an apocarotenoid from seeds of Bixa orellana,” Phytochemistry, vol. 28, no. 11, pp. 3159–3162, 1989. View at Scopus
  14. A. O. dos Santos, E. A. Britta, E. M. Bianco et al., “4-Acetoxydolastane diterpene from the Brazilian brown alga Canistrocarpus cervicornis as antileishmanial agent,” Marine Drugs, vol. 9, no. 11, pp. 2369–2383, 2011.
  15. M. C. Vendrametto, A. O. D. Santos, C. V. Nakamura, B. P. D. Filho, D. A. G. Cortez, and T. Ueda-Nakamura, “Evaluation of antileishmanial activity of eupomatenoid-5, a compound isolated from leaves of Piper regnellii var. pallescens,” Parasitology International, vol. 59, no. 2, pp. 154–158, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. P. Skehan, R. Storeng, D. Scudiero et al., “New colorimetric cytotoxicity assay for anticancer-drug screening,” Journal of the National Cancer Institute, vol. 82, no. 13, pp. 1107–1112, 1990. View at Scopus
  17. K. Conceição, K. Konno, M. Richardson et al., “Isolation and biochemical characterization of peptides presenting antimicrobial activity from the skin of Phyllomedusa hypochondrialis,” Peptides, vol. 27, no. 12, pp. 3092–3099, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. K. J. Pelizzaro-Rocha, P. Veiga-Santos, D. Lazarin-Bidóia et al., “Trypanocidal action of eupomatenoid-5 is related to mitochondrion dysfunction and oxidative damage in Trypanosoma cruzi,” Microbes and Infection, vol. 13, no. 12-13, pp. 1018–1024, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. R. F. S. Menna-Barreto, A. Henriques-Pons, A. V. Pinto, J. A. Morgado-Diaz, M. J. Soares, and S. L. De Castro, “Effect of a β-lapachone-derived naphthoimidazole on Trypanosoma cruzi: identification of target organelles,” Journal of Antimicrobial Chemotherapy, vol. 56, no. 6, pp. 1034–1041, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. L. Piacenza, F. Irigoín, M. N. Alvarez et al., “Mitochondrial superoxide radicals mediate programmed cell death in Trypanosoma cruzi: cytoprotective action of mitochondrial iron superoxide dismutase overexpression,” Biochemical Journal, vol. 403, no. 2, pp. 323–334, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. R. M. Coates, D. A. Ley, and P. L. Cavender, “Synthesis and carbon-13 nuclear magnetic resonance spectra of all-trans-geranylgeraniol and its nor analogues,” Journal of Organic Chemistry, vol. 43, no. 26, pp. 4915–4922, 1978. View at Scopus
  22. L. G. Rocha, J. R. G. S. Almeida, R. O. Macêdo, and J. M. Barbosa-Filho, “A review of natural products with antileishmanial activity,” Phytomedicine, vol. 12, no. 6-7, pp. 514–535, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. G. Singh, K. G. Jayanarayan, and C. S. Dey, “Novobiocin induces apoptosis-like cell death in topoisomerase II over-expressing arsenite resistant Leishmania donovani,” Molecular and Biochemical Parasitology, vol. 141, no. 1, pp. 57–69, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. R. F. S. Menna-Barreto, G. A. T. Laranja, M. C. C. Silva et al., “Anti-Trypanosoma cruzi activity of Pterodon pubescens seed oil: geranylgeraniol as the major bioactive component,” Parasitology Research, vol. 103, no. 1, pp. 111–117, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. R. F. S. Menna-Barreto, R. L. S. Goncalves, E. M. Costa et al., “The effects on Trypanosoma cruzi of novel synthetic naphthoquinones are mediated by mitochondrial dysfunction,” Free Radical Biology and Medicine, vol. 47, no. 5, pp. 644–653, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. A. O. dos Santos, M. A. Costa, T. Ueda-Nakamura et al., “Leishmania amazonensis: effects of oral treatment with copaiba oil in mice,” Experimental Parasitology, vol. 129, pp. 145–151, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. E. A. Britta, A. P. B. Silva, T. Ueda-Nakamura et al., “Benzaldehyde thiosemicarbazone derived from limonene complexed with copper induced mitochondrial dysfunction in Leishmania amazonenses,” Public Library of Science One, vol. 7, no. 8, pp. 1–12, 2012.
  28. R. Das, A. Roy, N. Dutta, and H. K. Majumder, “Reactive oxygen species and imbalance of calcium homeostasis contributes to curcumin induced programmed cell death in Leishmania donovani,” Apoptosis, vol. 13, no. 7, pp. 867–882, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. A. K. Shukla, S. Patra, and V. K. Dubey, “Iridoid glucosides from Nyctanthes arbortristis result in increased reactive oxygen species and cellular redox homeostasis imbalance in Leishmania parasite,” European Journal of Medicinal Chemistry, vol. 54, pp. 49–58, 2012.
  30. Y. Masuda, M. Nakaya, S. Nakajo, and K. Nakaya, “Geranylgeraniol potently induces caspase-3-like activity during apoptosis in human leukemia U937 cells,” Biochemical and Biophysical Research Communications, vol. 234, no. 3, pp. 641–645, 1997. View at Publisher · View at Google Scholar · View at Scopus
  31. N. Sen, B. B. Das, A. Ganguly et al., “Camptothecin induced mitochondrial dysfunction leading to programmed cell death in unicellular hemoflagellate Leishmania donovani,” Cell Death and Differentiation, vol. 11, no. 8, pp. 924–936, 2004. View at Publisher · View at Google Scholar · View at Scopus
  32. C. Paris, P. M. Loiseau, C. Bories, and J. Bréard, “Miltefosine induces apoptosis-like death in Leishmania donovani promastigotes,” Antimicrobial Agents and Chemotherapy, vol. 48, no. 3, pp. 852–859, 2004. View at Publisher · View at Google Scholar · View at Scopus
  33. P. Mukherjee, S. B. Majee, S. Ghosh, and B. Hazra, “Apoptosis-like death in Leishmania donovani promastigotes induced by diospyrin and its ethanolamine derivative,” International Journal of Antimicrobial Agents, vol. 34, no. 6, pp. 596–601, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. A. Debrabant, N. Lee, S. Bertholet, R. Duncan, and H. L. Nakhasi, “Programmed cell death in trypanosomatids and other unicellular organisms,” International Journal for Parasitology, vol. 33, no. 3, pp. 257–267, 2003. View at Publisher · View at Google Scholar · View at Scopus
  35. Y. Masuda, S. Maeda, A. Watanabe et al., “A novel 21-kDa cytochrome c-releasing factor is generated upon treatment of human leukemia U937 cells with geranylgeraniol,” Biochemical and Biophysical Research Communications, vol. 346, no. 2, pp. 454–460, 2006. View at Publisher · View at Google Scholar · View at Scopus
  36. K. Miquel, A. Pradines, and G. Favre, “Farnesol and geranylgeraniol induce actin cytoskeleton disorganization and apoptosis in A549 lung adenocarcinoma cells,” Biochemical and Biophysical Research Communications, vol. 225, no. 3, pp. 869–876, 1996. View at Publisher · View at Google Scholar · View at Scopus