About this Journal Submit a Manuscript Table of Contents
Evidence-Based Complementary and Alternative Medicine
Volume 2012 (2012), Article ID 320304, 15 pages
http://dx.doi.org/10.1155/2012/320304
Research Article

Suppression of Diet-Induced Hypercholesterolemia by Turtle Jelly, A Traditional Chinese Functional Food, in Rats

1State Key Laboratory of Chinese Medicine and Molecular Pharmacology, 518057 Shenzhen, China
2Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong
3Food Safety and Technology Research Centre, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong

Received 28 April 2012; Revised 6 August 2012; Accepted 28 August 2012

Academic Editor: Y. Ohta

Copyright © 2012 Jian-Hong Wu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. R. Deepa and P. Varalakshmi, “Atheroprotective effect of exogenous heparin-derivative treatment on the aortic disturbances and lipoprotein oxidation in hypercholesterolemic diet fed rats,” Clinica Chimica Acta, vol. 355, no. 1-2, pp. 119–130, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. A. M. Gotto Jr., “Cholesterol management in theory and practice,” Circulation, vol. 96, no. 12, pp. 4424–4430, 1997. View at Scopus
  3. S. Moncada, J. F. Martin, and A. Higgs, “Symposium on regression of atherosclerosis,” European Journal of Clinical Investigation, vol. 23, no. 7, pp. 385–398, 1993. View at Scopus
  4. C. Y. Kwok, C. N. Y. Wong, M. Y. C. Yau et al., “Consumption of dried fruit of Crataegus pinnatifida (hawthorn) suppresses high-cholesterol diet-induced hypercholesterolemia in rats,” Journal of Functional Foods, vol. 2, no. 3, pp. 179–186, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. R. S. Rosenson, “Pluripotential mechanisms of cardioprotection with HMG-CoA reductase inhibitor therapy,” American Journal of Cardiovascular Drugs, vol. 1, no. 6, pp. 411–420, 2001. View at Scopus
  6. Q. F. Zhang and H. Y. Cheung, “The content of astilbin and taxifolin in concentrated extracts of Rhizoma Smilacis Glabrae and turtle jelly vary significantly,” Food Chemistry, vol. 119, no. 3, pp. 907–912, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. Q. Li, J. H. Wu, D. J. Guo, H. L. Cheng, S. L. Chen, and S. W. Chan, “Suppression of diet-induced hypercholesterolemia by scutellarin in rats,” Planta Medica, vol. 75, no. 11, pp. 1203–1208, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. C. W. Wan, C. N. Wong, W. K. Pin, et al., “Chlorogenic acid exhibits cholesterol lowering and fatty liver attenuating properties by up-regulating the gene expression of PPAR-α in hypercholesterolemic rats induced with a high-cholesterol diet,” Phytotherapy Research. In press. View at Publisher · View at Google Scholar
  9. L. P. Yan, S. W. Chan, A. S. C. Chan, S. L. Chen, X. J. Ma, and H. X. Xu, “Puerarin decreases serum total cholesterol and enhances thoracic aorta endothelial nitric oxide synthase expression in diet-induced hypercholesterolemic rats,” Life Sciences, vol. 79, no. 4, pp. 324–330, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. A. Ónody, C. Csonka, Z. Giricz, and P. Ferdinandy, “Hyperlipidemia induced by a cholesterol-rich diet leads to enhanced peroxynitrite formation in rat hearts,” Cardiovascular Research, vol. 58, no. 3, pp. 663–670, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. W. B. Kannel, “Range of serum cholesterol values in the population developing coronary artery disease,” The American Journal of Cardiology, vol. 76, no. 9, pp. 69C–77C, 1995. View at Scopus
  12. G. Kojda and D. Harrison, “Interactions between NO and reactive oxygen species: pathophysiological importance in atherosclerosis, hypertension, diabetes and heart failure,” Cardiovascular Research, vol. 43, no. 3, pp. 562–571, 1999. View at Publisher · View at Google Scholar · View at Scopus
  13. H. Lum and K. A. Roebuck, “Oxidant stress and endothelial cell dysfunction,” American Journal of Physiology, vol. 280, no. 4, pp. C719–C741, 2001. View at Scopus
  14. W. Martinet, M. W. M. Knaapen, G. R. Y. De Meyer, A. G. Herman, and M. M. Kockx, “Oxidative DNA damage and repair in experimental atherosclerosis are reversed by dietary lipid lowering,” Circulation Research, vol. 88, no. 7, pp. 733–739, 2001. View at Scopus
  15. M. Napolitano, R. Rivabene, M. Avella et al., “Oxidation affects the regulation of hepatic lipid synthesis by chylomicron remnants,” Free Radical Biology and Medicine, vol. 30, no. 5, pp. 506–515, 2001. View at Publisher · View at Google Scholar · View at Scopus
  16. W. F. Yiu, P. L. Kwan, C. Y. Wong et al., “Attenuation of fatty liver and prevention of hypercholesterolemia by extract of Curcuma longa through regulating the expression of CYP7A1, LDL-receptor, HO-1, and HMG-CoA reductase,” Journal of Food Science, vol. 76, no. 3, pp. H80–H89, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. M. K. Lee, S. H. Bok, T. S. Jeong et al., “Supplementation of naringenin and its synthetic derivative alters antioxidant enzyme activities of erythrocyte and liver in high cholesterol-fed rats,” Bioorganic & Medicinal Chemistry, vol. 10, no. 7, pp. 2239–2244, 2002. View at Publisher · View at Google Scholar · View at Scopus
  18. I. Fki, M. Bouaziz, Z. Sahnoun, and S. Sayadi, “Hypocholesterolemic effects of phenolic-rich extracts of Chemlali olive cultivar in rats fed a cholesterol-rich diet,” Bioorganic & Medicinal Chemistry, vol. 13, no. 18, pp. 5362–5370, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. L. Anila and N. R. Vijayalakshmi, “Antioxidant action of flavonoids from Mangifera indica and Emblica officinalis in hypercholesterolemic rats,” Food Chemistry, vol. 83, no. 4, pp. 569–574, 2003. View at Publisher · View at Google Scholar · View at Scopus
  20. T. Yokozawa, A. Ishida, E. J. Cho, and T. Nakagawa, “The effects of Coptidis Rhizoma extract on a hypercholesterolemic animal model,” Phytomedicine, vol. 10, no. 1, pp. 17–22, 2003. View at Publisher · View at Google Scholar · View at Scopus
  21. M. J. Kuchan and J. A. Frangos, “Role of calcium and calmodulin in flow-induced nitric oxide production in endothelial cells,” American Journal of Physiology, vol. 266, no. 3, pp. C628–C636, 1994. View at Scopus
  22. Y. Ohara, T. E. Peterson, and D. G. Harrison, “Hypercholesterolemia increases endothelial superoxide anion production,” The Journal of Clinical Investigation, vol. 91, no. 6, pp. 2546–2551, 1993. View at Scopus
  23. K. Kliche, P. Jeggle, H. Pavenstädt, and H. Oberleithner, “Role of cellular mechanics in the function and life span of vascular endothelium,” Pflugers Archiv European Journal of Physiology, vol. 462, pp. 209–217, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. T. Matsumoto, A. Sato, H. Suenaga, T. Kobayashi, and K. Kamata, “Modulations of shear stress-induced contractile responses and agonist-induced vasodilation in hypercholesterolemic rats,” Atherosclerosis, vol. 175, no. 1, pp. 31–38, 2004. View at Publisher · View at Google Scholar · View at Scopus
  25. K. E. Sorensen, D. S. Celermajer, D. Georgakopoulos, G. Hatcher, D. J. Betteridge, and J. E. Deanfield, “Impairment of endothelium-dependent dilation is an early event in children with familial hypercholesterolemia and is related to the lipoprotein(a) level,” The Journal of Clinical Investigation, vol. 93, no. 1, pp. 50–55, 1994. View at Scopus
  26. R. F. Chen, Y. C. Shen, H. S. Huang et al., “Evaluation of the anti-inflammatory and cytotoxic effects of anthraquinones and anthracenes derivatives in human leucocytes,” Journal of Pharmacy and Pharmacology, vol. 56, no. 7, pp. 915–919, 2004. View at Publisher · View at Google Scholar · View at Scopus
  27. D. Shuangsuo, Z. Zhengguo, C. Yunru et al., “Inhibition of the replication of hepatitis B virus in vitro by emodin,” Medical Science Monitor, vol. 12, no. 9, pp. BR302–BR306, 2006. View at Scopus
  28. S. Basu, A. Ghosh, and B. Hazra, “Evaluation of the antibacterial activity of Ventilago madraspatana Gaertn., Rubia cordifolia Linn., and Lantana camara Linn.: isolation of emodin and physcion as active antibacterial agents,” Phytotherapy Research, vol. 19, no. 10, pp. 888–894, 2005. View at Publisher · View at Google Scholar · View at Scopus
  29. H. C. Huang, S. H. Chu, and P. D. L. Chao, “Vasorelaxants from Chinese herbs, emodin and scoparone, possess immunosuppressive properties,” European Journal of Pharmacology, vol. 198, no. 2-3, pp. 211–213, 1991. View at Scopus
  30. A. Endo, “The discovery and development of HMG-CoA reductase inhibitors,” Journal of Lipid Research, vol. 33, no. 11, pp. 1569–1582, 1992. View at Scopus
  31. C. A. Bursill, M. Abbey, and P. D. Roach, “A green tea extract lowers plasma cholesterol by inhibiting cholesterol synthesis and upregulating the LDL receptor in the cholesterol-fed rabbit,” Atherosclerosis, vol. 193, no. 1, pp. 86–93, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. P. D. Roach, N. L. Kerry, M. J. Whiting, and P. J. Nestel, “Coordinate changes in the low density lipoprotein receptor activity of liver and mononuclear cells in the rabbit,” Atherosclerosis, vol. 101, no. 2, pp. 157–164, 1993. View at Scopus
  33. R. W. Hanson and L. Reshef, “Regulation of phosphoenolpyruvate carboxykinase (GTP) gene expression,” Annual Review of Biochemistry, vol. 66, pp. 581–611, 1997. View at Publisher · View at Google Scholar · View at Scopus
  34. P. She, M. Shiota, K. D. Shelton, R. Chalkley, C. Postic, and M. A. Magnuson, “Phosphoenolpyruvate carboxykinase is necessary for the integration of hepatic energy metabolism,” Molecular and Cellular Biology, vol. 20, no. 17, pp. 6508–6517, 2000. View at Publisher · View at Google Scholar · View at Scopus
  35. S. C. Kalhan, S. Mahajan, E. Burkett, L. Reshef, and R. W. Hanson, “Glyceroneogenesis and the source of glycerol for hepatic triacylglycerol synthesis in humans,” The Journal of Biological Chemistry, vol. 276, no. 16, pp. 12928–12931, 2001. View at Publisher · View at Google Scholar · View at Scopus
  36. S. Boullu-Ciocca, V. Achard, V. Tassistro, A. Dutour, and M. Grino, “Postnatal programming of glucocorticoid metabolism in rats modulates high-fat diet-induced regulation of visceral adipose tissue glucocorticoid exposure and sensitivity and adiponectin and proinflammatory adipokines gene expression in adulthood,” Diabetes, vol. 57, no. 3, pp. 669–677, 2008. View at Publisher · View at Google Scholar · View at Scopus
  37. O. Barbier, I. P. Torra, Y. Duguay et al., “Pleiotropic actions of peroxisome proliferator-activated receptors in lipid metabolism and atherosclerosis,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 22, no. 5, pp. 717–726, 2002. View at Publisher · View at Google Scholar · View at Scopus
  38. J. Berger and D. E. Moller, “The mechanisms of action of PPARs,” Annual Review of Medicine, vol. 53, pp. 409–435, 2002. View at Publisher · View at Google Scholar · View at Scopus
  39. T. C. Leone, C. J. Weinheimer, and D. P. Kelly, “A critical role for the peroxisome proliferator-activated receptor α (PPARα) in the cellular fasting response: the PPARα-null mouse as a model of fatty acid oxidation disorders,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 13, pp. 7473–7478, 1999. View at Publisher · View at Google Scholar · View at Scopus
  40. S. C. Hsu and C. J. Huang, “Changes in liver PPARα mRNA expression in response to two levels of high-safflower-oil diets correlate with changes in adiposity and serum leptin in rats and mice,” Journal of Nutritional Biochemistry, vol. 18, no. 2, pp. 86–96, 2007. View at Publisher · View at Google Scholar · View at Scopus