About this Journal Submit a Manuscript Table of Contents
Evidence-Based Complementary and Alternative Medicine
Volume 2012 (2012), Article ID 342165, 12 pages
http://dx.doi.org/10.1155/2012/342165
Research Article

Dry Needling at Myofascial Trigger Spots of Rabbit Skeletal Muscles Modulates the Biochemicals Associated with Pain, Inflammation, and Hypoxia

1Department of Physical Therapy, Graduate Institute of Rehabilitation Science, China Medical University, Taichung 40402, Taiwan
2Department of Physical Medicine and Rehabilitation, Tzu Chi General Hospital, No. 66 Sec. 1 Fongsing Road, Tanzih Township, Taichung 42743, Taiwan
3Department of Physical Medicine and Rehabilitation, China Medical University Hospital, No. 2 Yuh-Der Road Taichung 40447, Taiwan
4School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung 40402, Taiwan

Received 18 October 2012; Accepted 26 November 2012

Academic Editor: Chang-Zern Hong

Copyright © 2012 Yueh-Ling Hsieh et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Background and Purpose. Dry needling is an effective therapy for the treatment of pain associated with myofascial trigger point (MTrP). However, the biochemical effects of dry needling that are associated with pain, inflammation, and hypoxia are unclear. This study investigated the activities of -endorphin, substance P, TNF- , COX-2, HIF-1 , iNOS, and VEGF after different dosages of dry needling at the myofascial trigger spots (MTrSs) of a skeletal muscle in rabbit. Materials and Methods. Dry needling was performed either with one dosage (1D) or five dosages (5D) into the biceps femoris with MTrSs in New Zealand rabbits. Biceps femoris, serum, and dorsal root ganglion (DRG) were sampled immediately and 5 d after dry needling for -endorphin, substance P, TNF- , COX-2, HIF-1 , iNOS, and VEGF immunoassays. Results. The 1D treatment enhanced the -endorphin levels in the biceps femoris and serum and reduced substance P in the biceps femoris and DRG. The 5D treatment reversed these effects and was accompanied by increase of TNF- , COX-2, HIF-1 , iNOS, and VEGF production in the biceps femoris. Moreover, the higher levels of these biochemicals were still maintained 5 d after treatment. Conclusion. Dry needling at the MTrSs modulates various biochemicals associated with pain, inflammation, and hypoxia in a dose-dependent manner.