About this Journal Submit a Manuscript Table of Contents
Evidence-Based Complementary and Alternative Medicine
Volume 2012 (2012), Article ID 350239, 10 pages
http://dx.doi.org/10.1155/2012/350239
Research Article

Triptolide Transcriptionally Represses HER2 in Ovarian Cancer Cells by Targeting NF-κB

1Department of Obstetrics and Gynecology, Tri-Service General Hospital, No. 325, Section 2, Cheng-Kung Road, Neihu, Taipei 11490, Taiwan
2School of Dentistry, National Defense Medical Center, No. 161, Section 6, Minquan E. Road, Neihu, Taipei 11490, Taiwan
3Department of Oral and Maxillofacial Surgery, Tri-Service General Hospital, Taipei 11490, Taiwan
4Kang-Ning Junior College of Medical Care and Management, Taipei 11490, Taiwan
5Department of Microbiology and Immunology, National Defense Medical Center, Taipei 11490, Taiwan
6Department of Pharmacology, National Defense Medical Center, Taipei 11490, Taiwan
7Department of Pathology, Da-Chien General Hospital, Miaoli 36052, Taiwan
8Department of Nursing, Jente Junior College of Medicine, Nursing, and Management, Miaoli 35664, Taiwan

Received 29 September 2012; Revised 28 November 2012; Accepted 2 December 2012

Academic Editor: Yoshiyuki Kimura

Copyright © 2012 Chien-Chih Ou et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. M. Kupchan, W. A. Court, R. G. Dailey, C. J. Gilmore Jr., and R. F. Bryan, “Triptolide and tripdiolide, novel antileukemic diterpenoid triepoxides from Tripterygium wilfordii,” Journal of the American Chemical Society, vol. 94, no. 20, pp. 7194–7195, 1972. View at Scopus
  2. Z. L. Zhou, Y. X. Yang, J. Ding, Y. C. Li, and Z. H. Miao, “Triptolide: structural modifications, structure-activity relationships, bioactivities, clinical development and mechanisms,” Natural Product Reports, vol. 29, pp. 457–475, 2012. View at Publisher · View at Google Scholar
  3. S. Yang, J. Chen, Z. Guo et al., “Triptolide inhibits the growth and metastasis of solid tumors,” Molecular Cancer Therapeutics, vol. 2, no. 1, pp. 65–72, 2003. View at Scopus
  4. P. A. Phillips, V. Dudeja, J. A. McCarroll et al., “Triptolide induces pancreatic cancer cell death via inhibition of heat shock protein 70,” Cancer Research, vol. 67, no. 19, pp. 9407–9416, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. Y. W. Chen, G. J. Lin, W. T. Chia, C. K. Lin, Y. P. Chuang, and H. K. Sytwu, “Triptolide exerts anti-tumor effect on oral cancer and KB cells in vitro and in vivo,” Oral Oncology, vol. 45, pp. 562–568, 2009. View at Publisher · View at Google Scholar
  6. Y. W. Chen, G. J. Lin, Y. P. Chuang et al., “Triptolide circumvents drug-resistant effect and enhances 5-fluorouracil antitumor effect on KB cells,” Anti-Cancer Drugs, vol. 21, no. 5, pp. 502–513, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. S. A. Eccles, “The epidermal growth factor receptor/Erb-B/HER family in normal and malignant breast biology,” The International Journal of Developmental Biology, vol. 55, pp. 685–696, 2011. View at Publisher · View at Google Scholar
  8. R. Y. Tsang and R. S. Finn, “Beyond trastuzumab: novel therapeutic strategies in HER2-positive metastatic breast cancer,” British Journal of Cancer, vol. 106, pp. 6–13, 2012. View at Publisher · View at Google Scholar
  9. Y. Yarden and M. X. Sliwkowski, “Untangling the ErbB signalling network,” Nature Reviews Molecular Cell Biology, vol. 2, no. 2, pp. 127–137, 2001. View at Publisher · View at Google Scholar · View at Scopus
  10. N. E. Hynes and H. A. Lane, “ERBB receptors and cancer: the complexity of targeted inhibitors,” Nature Reviews Cancer, vol. 5, no. 5, pp. 341–354, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. W. Zhu, Y. Ou, Y. Li et al., “A small-molecule triptolide suppresses angiogenesis and invasion of human anaplastic thyroid carcinoma cells via down-regulation of the nuclear factor-κB pathway,” Molecular Pharmacology, vol. 75, pp. 812–819, 2009. View at Publisher · View at Google Scholar
  12. W. K. Dong, Y. L. Ji, D. H. Oh et al., “Triptolide-induced suppression of phospholipase D expression inhibits proliferation of MDA-MB-231 breast cancer cells,” Experimental and Molecular Medicine, vol. 41, no. 9, pp. 678–685, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. C. C. Ou, S. C. Hsu, Y. H. Hsieh et al., “Downregulation of HER2 by RIG1 involves the PI3K/Akt pathway in ovarian cancer cells,” Carcinogenesis, vol. 29, no. 2, pp. 299–306, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. S. C. Hsu, C. C. Ou, T. C. Chuang et al., “Ganoderma tsugae extract inhibits expression of epidermal growth factor receptor and angiogenesis in human epidermoid carcinoma cells: in vitro and in vivo,” Cancer Letters, vol. 281, no. 1, pp. 108–116, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. J. W. Li, T. C. Chuang, A. H. Yang, C. K. Hsu, and M. C. Kao, “Clinicopathological relevance of HER2/neu and a related gene-protein cubic regression correlation in colorectal adenocarcinomas in Taiwan,” International Journal of Oncology, vol. 26, pp. 933–943, 2005.
  16. Y. Miyata, T. Sato, and A. Ito, “Triptolide, a diterpenoid triepoxide, induces antitumor proliferation via activation of c-Jun NH2-terminal kinase 1 by decreasing phosphatidylinositol 3-kinase activity in human tumor cells,” Biochemical and Biophysical Research Communications, vol. 336, pp. 1081–1086, 2005. View at Publisher · View at Google Scholar
  17. U. Senftleben, Y. Cao, G. Xiao et al., “Activation by IKKα of a second, evolutionary conserved, NF-κB signaling pathway,” Science, vol. 293, no. 5534, pp. 1495–1499, 2001. View at Publisher · View at Google Scholar · View at Scopus
  18. D. V. Titov, B. Gilman, Q. L. He et al., “XPB, a subunit of TFIIH, is a target of the natural product triptolide,” Nature Chemical Biology, vol. 7, no. 3, pp. 182–188, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. S. G. Manzo, Z. L. Zhou, Y. Q. Wang et al., “Natural product triptolide mediates cancer cell death by triggering cdk7-dependent degradation of RNA polymerase II,” Cancer Research, vol. 72, pp. 5363–5373, 2012. View at Publisher · View at Google Scholar
  20. A. M. Chumakov, C. W. Miller, D. L. Chen, and H. P. Koeffler, “Analysis of p53 transactivation through high-affinity binding sites,” Oncogene, vol. 8, no. 11, pp. 3005–3011, 1993. View at Scopus
  21. T. M. Gottlieb, J. F. Martinez Leal, R. Seger, Y. Taya, and M. Oren, “Cross-talk between Akt, p53 and Mdm2: possible implications for the regulation of apoptosis,” Oncogene, vol. 21, no. 8, pp. 1299–1303, 2002. View at Publisher · View at Google Scholar · View at Scopus
  22. J. Ma, M. Dey, H. Yang et al., “Anti-inflammatory and immunosuppressive compounds from Tripterygium wilfordii,” Phytochemistry, vol. 68, no. 8, pp. 1172–1178, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. S. X. Wu and N. R. Guo, “Clinical observation on effect of triptolide tablet in treating patients with psoriasis vulgaris,” Chinese Journal of Integrative Medicine, vol. 11, pp. 147–148, 2005. View at Publisher · View at Google Scholar
  24. R. Gautam and S. M. Jachak, “Recent developments in anti-inflammatory natural products,” Medicinal Research Reviews, vol. 29, no. 5, pp. 767–820, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. X. Tao, J. Younger, F. Z. Fan, B. Wang, and P. E. Lipsky, “Benefit of an extract of Tripterygium wilfordii Hook F in patients with rheumatoid arthritis: a double-blind, placebo-controlled study,” Arthritis and Rheumatism, vol. 46, no. 7, pp. 1735–1743, 2002. View at Publisher · View at Google Scholar · View at Scopus
  26. V. Premkumar, M. Dey, R. Dorn, and I. Raskin, “MyD88-dependent and independent pathways of Toll-Like Receptors are engaged in biological activity of Triptolide in ligand-stimulated macrophages,” BMC Chemical Biology, vol. 10, article 3, 2010. View at Publisher · View at Google Scholar
  27. G. W. Hoyle, C. I. Hoyle, J. Chen, W. Chang, R. W. Williams, and R. J. Rando, “Identification of triptolide, a natural diterpenoid compound, as an inhibitor of lung inflammation,” American Journal of Physiology, vol. 298, no. 6, pp. L830–L836, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. A. S. Baldwin Jr., “The NF-κB and IκB PROTEINS: new discoveries and insights,” Annual Review of Immunology, vol. 14, pp. 649–683, 1996. View at Publisher · View at Google Scholar
  29. J. Folkman, “Angiogenesis in cancer, vascular, rheumatoid and other disease,” Journal of Natural Medicines, vol. 1, pp. 27–31, 1995.
  30. S. Huang, J. B. Robinson, A. DeGuzman, C. D. Bucana, and I. J. Fidler, “Blockade of nuclear factor-κb signaling inhibits angiogenesis and tumorigenicity of human ovarian cancer cells by suppressing expression of vascular endothelial growth factor and interleukin 8,” Cancer Research, vol. 60, no. 19, pp. 5334–5339, 2000. View at Scopus
  31. R. J. Shaw and L. C. Cantley, “Ras, PI(3)K and mTOR signalling controls tumour cell growth,” Nature, vol. 441, no. 7092, pp. 424–430, 2006. View at Publisher · View at Google Scholar · View at Scopus
  32. N. L. Busaidy, A. Farooki, A. Dowlati et al., “Management of metabolic effects associated with anticancer agents targeting the PI3K-Akt-mTOR pathway,” Journal of Clinical Oncology, vol. 30, pp. 2919–2928, 2012. View at Publisher · View at Google Scholar
  33. M. Laplante and D. M. Sabatini, “mTOR signaling in growth control and disease,” Cell, vol. 149, pp. 274–229, 2012. View at Publisher · View at Google Scholar
  34. M.-F. He, L. Liu, W. Ge et al., “Antiangiogenic activity of Tripterygium wilfordii and its terpenoids,” Journal of Ethnopharmacology, vol. 121, pp. 61–68, 2009. View at Publisher · View at Google Scholar
  35. A. Magnifico, L. Albano, S. Campaner et al., “Tumor-initiating cells of HER2-positive carcinoma cell lines express the highest oncoprotein levels and are sensitive to trastuzumab,” Clinical Cancer Research, vol. 15, no. 6, pp. 2010–2021, 2009. View at Publisher · View at Google Scholar · View at Scopus
  36. H. Korkaya, A. Paulson, F. Iovino, and M. S. Wicha, “HER2 regulates the mammary stem/progenitor cell population driving tumorigenesis and invasion,” Oncogene, vol. 27, no. 47, pp. 6120–6130, 2008. View at Publisher · View at Google Scholar · View at Scopus
  37. H. Korkaya and M. S. Wicha, “HER-2, notch, and breast cancer stem cells: targeting an axis of evil,” Clinical Cancer Research, vol. 15, no. 6, pp. 1845–1847, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. M. A. Goodell, M. Rosenzweig, H. Kim et al., “Dye efflux studies suggest that hematopoietic stem cells expressing low or undetectable levels of CD34 antigen exist in multiple species,” Nature Medicine, vol. 3, no. 12, pp. 1337–1345, 1997. View at Publisher · View at Google Scholar · View at Scopus