About this Journal Submit a Manuscript Table of Contents
Evidence-Based Complementary and Alternative Medicine
Volume 2012 (2012), Article ID 364604, 28 pages
http://dx.doi.org/10.1155/2012/364604
Review Article

Potential Antiosteoporotic Agents from Plants: A Comprehensive Review

1Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
2Department of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350108, China
3School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK

Received 10 August 2012; Accepted 30 October 2012

Academic Editor: Olumayokun A. Olajide

Copyright © 2012 Min Jia et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. Sambrook and C. Cooper, “Osteoporosis,” Lancet, vol. 367, no. 9527, pp. 2010–2018, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. T. D. Rachner, S. Khosla, and L. C. Hofbauer, “Osteoporosis: now and the future,” The Lancet, vol. 377, no. 9773, pp. 1276–1287, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. P. J. Enriori and C. L. Enriori, “The pathogenesis of osteoporosis in older women and men: a review,” Journal of Steroid Biochemistry and Molecular Biology, vol. 82, no. 1, pp. 1–6, 2002. View at Publisher · View at Google Scholar · View at Scopus
  4. F. Tremollieres and C. Ribot, “Bone mineral density and prediction of non-osteoporotic disease,” Maturitas, vol. 65, no. 4, pp. 348–351, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. J. C. Gallagher, “Advances in bone biology and new treatments for bone loss,” Maturitas, vol. 60, no. 1, pp. 65–69, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. S. L. Teitelbaum, “Bone: the conundrum of glucocorticoid-induced of osteoporosis,” Nature Reviews Endocrinology, vol. 8, no. 8, pp. 451–452, 2012.
  7. P. Moutsatsou, E. Kassi, and A. G. Papavassiliou, “Glucocorticoid receptor signaling in bone cells,” Trends in Molecular Medicine, vol. 18, no. 6, pp. 348–359, 2012.
  8. D. Müller, J. Pulm, and A. Gandjour, “Cost-effectiveness of different strategies for selecting and treating individuals at increased risk of osteoporosis or osteopenia, a systematic review,” Value in Health, vol. 15, no. 2, pp. 284–298, 2012.
  9. J. J. Body, P. Bergmann, S. Boonen et al., “Extraskeletal benefits and risks of calcium, Vitamin D and anti-osteoporosis medications,” Osteoporosis International, vol. 23, supplement 1, pp. 1–23, 2012. View at Publisher · View at Google Scholar
  10. D. A. Davey, “Update: estrogen and estrogen plus progestin therapy in the care of women at and after the menopause,” Womens Health, vol. 8, no. 2, pp. 169–189, 2012.
  11. T. I. annitti, S. Rosini, D. Lodi, B. Frediani, V. Rottigni, and B. Palmieri, “Bisphosphonates: focus on inflammation and bone loss,” American Journal of Therapeutics, vol. 19, no. 3, pp. 228–246, 2012.
  12. B. S. Komm and A. A. Chines, “An update on selective estrogen receptor modulators for the prevention and treatment of osteoporosis,” Maturitas, vol. 71, no. 3, pp. 221–226, 2012.
  13. M. Saito and K. Marumo, “The effects of parathyroid hormone (teriparatide) on bone quality in osteoporosis,” Clinical Calcium, vol. 22, no. 3, pp. 343–355, 2012.
  14. J. Y. Reginster and A. Neuprez, “Strontium ranelate: a look back at its use for osteoporosis,” Expert Opinion on Pharmacotherapy, vol. 11, no. 17, pp. 2915–2927, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. J. Compston, “The use of combination therapy in the treatment of postmenopausal osteoporosis,” Endocrine, vol. 41, no. 1, pp. 11–18, 2012.
  16. G. Zhang, L. Qin, W. Y. Hung et al., “Flavonoids derived from herbal Epimedium brevicornum Maxim prevent OVX-induced osteoporosis in rats independent of its enhancement in intestinal calcium absorption,” Bone, vol. 38, no. 6, pp. 818–825, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. D. W. Zhang, Y. Cheng, N. L. Wang, J. C. Zhang, M. S. Yang, and X. S. Yao, “Effects of total flavonoids and flavonol glycosides from Epimedium koreanum Nakai on the proliferation and differentiation of primary osteoblasts,” Phytomedicine, vol. 15, no. 1-2, pp. 55–61, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. G. Qian, X. Zhang, L. Lu, X. Wu, S. Li, and J. Meng, “Regulation of Cbfa1 expression by total flavonoids of Herba Epimedii,” Endocrine Journal, vol. 53, no. 1, pp. 87–94, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. P. Songlin, Z. Ge, H. Yixin et al., “Epimedium-derived flavonoids promote osteoblastogenesis and suppress adipogenesis in bone marrow stromal cells while exerting an anabolic effect on osteoporotic bone,” Bone, vol. 45, no. 3, pp. 534–544, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. J. F. Zhang, G. Li, C. Y. Chan et al., “Flavonoids of Herba Epimedii regulate osteogenesis of human mesenchymal stem cells through BMP and Wnt/β-catenin signaling pathway,” Molecular and Cellular Endocrinology, vol. 314, no. 1, pp. 70–74, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. H. Nian, M. H. Ma, S. S. Nian, and L. L. Xu, “Antiosteoporotic activity of icariin in ovariectomized rats,” Phytomedicine, vol. 16, no. 4, pp. 320–326, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. T. P. Hsieh, S. Y. Sheu, J. S. Sun, and M. H. Chen, “Icariin inhibits osteoclast differentiation and bone resorption by suppression of MAPKs/NF-κB regulated HIF-1α and PGE2 synthesis,” Phytomedicine, vol. 18, no. 2-3, pp. 176–185, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. M. S. Wong, S. K. Mok, W. F. Chen et al., “Icariin protects against bone loss induced by oestrogen deficiency and activates oestrogen receptor-dependent osteoblastic functions in UMR 106 cells,” British Journal of Pharmacology, vol. 159, no. 4, pp. 939–949, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. T. P. Hsieh, S. Y. Sheu, J. S. Sun, M. H. Chen, and M. H. Liu, “Icariin isolated from Epimedium pubescens regulates osteoblasts anabolism through BMP-2, SMAD4, and Cbfa1 expression,” Phytomedicine, vol. 17, no. 6, pp. 414–423, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. H. J. Choi, J. S. Eun, Y. R. Park et al., “Ikarisoside A inhibits inducible nitric oxide synthase in lipopolysaccharide-stimulated RAW 264.7 cells via p38 kinase and nuclear factor-kappaB signaling pathways,” European Journal of Pharmacology, vol. 601, no. 1–3, pp. 171–178, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. H. J. Choi, Y. R. Park, M. Nepal et al., “Inhibition of osteoclastogenic differentiation by Ikarisoside A in RAW 264.7 cells via JNK and NF-kappa B signaling pathways,” European Journal of Pharmacology, vol. 636, no. 1–3, pp. 28–35, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. S. M. Potter, J. A. Baum, H. Teng, R. J. Stillman, N. F. Shay, and J. W. Erdman, “Soy protein and isoflavones: their effects on blood lipids and bone density in postmenopausal women,” American Journal of Clinical Nutrition, vol. 68, no. 6, pp. 1375S–1379S, 1998. View at Scopus
  28. K. Taku, M. K. Melby, N. Nishi, T. Omori, and M. S. Kurzer, “Soy isoflavones for osteoporosis: an evidence-based approach,” Maturitas, vol. 70, no. 4, pp. 333–338, 2011.
  29. A. Bitto, F. Polito, B. Burnett et al., “Protective effect of genistein aglycone on the development of osteonecrosis of the femoral head and secondary osteoporosis induced by methylprednisolone in rats,” Journal of Endocrinology, vol. 201, no. 3, pp. 321–328, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. A. Bitto, B. P. Burnett, F. Polito et al., “Genistein aglycone reverses glucocorticoid-induced osteoporosis and increases bone breaking strength in rats: a comparative study with alendronate,” British Journal of Pharmacology, vol. 156, no. 8, pp. 1287–1295, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. M. Atteritano, S. Mazzaferro, A. Frisina et al., “Genistein effects on quantitative ultrasound parameters and bone mineral density in osteopenic postmenopausal women,” Osteoporosis International, vol. 20, no. 11, pp. 1947–1954, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. B. Filipović, B. Šošić-Jurjević, V. Ajdžanović et al., “Daidzein administration positively affects thyroid C cells and bone structure in orchidectomized middle-aged rats,” Osteoporosis International, vol. 21, no. 9, pp. 1609–1616, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. M. Komrakova, S. Sehmisch, M. Tezval et al., “Impact of 4-methylbenzylidene camphor, daidzein, and estrogen on intact and osteotomized bone in osteopenic rats,” Journal of Endocrinology, vol. 211, no. 2, pp. 157–168, 2011.
  34. D. Wang, F. Li, and Z. Jiang, “Osteoblastic proliferation stimulating activity of Psoralea corylifolia extracts and two of its flavonoids,” Planta Medica, vol. 67, no. 8, pp. 748–749, 2001. View at Scopus
  35. D. Xin, H. Wang, J. Yang et al., “Phytoestrogens from Psoralea corylifolia reveal estrogen receptor-subtype selectivity,” Phytomedicine, vol. 17, no. 2, pp. 126–131, 2010. View at Publisher · View at Google Scholar · View at Scopus
  36. C. K. Park, Y. Lee, E. J. Chang et al., “Bavachalcone inhibits osteoclast differentiation through suppression of NFATc1 induction by RANKL,” Biochemical Pharmacology, vol. 75, no. 11, pp. 2175–2182, 2008. View at Publisher · View at Google Scholar · View at Scopus
  37. D. Z. Tang, F. Yang, Z. Yang et al., “Psoralen stimulates osteoblast differentiation through activation of BMP signaling,” Biochemical and Biophysical Research Communications, vol. 405, no. 2, pp. 256–261, 2011. View at Publisher · View at Google Scholar · View at Scopus
  38. X. Wang, J. Wu, H. Chiba, K. Yamada, and Y. Ishimi, “Puerariae radix prevents bone loss in castrated male mice,” Metabolism, vol. 54, no. 11, pp. 1536–1541, 2005. View at Publisher · View at Google Scholar · View at Scopus
  39. X. Wang, J. Wu, H. Chiba, K. Umegaki, K. Yamada, and Y. Ishimi, “Puerariae radix prevents bone loss in ovariectomized mice,” Journal of Bone and Mineral Metabolism, vol. 21, no. 5, pp. 268–275, 2003. View at Publisher · View at Google Scholar · View at Scopus
  40. J. Woo, E. Lau, S. C. Ho et al., “Comparison of Pueraria lobata with hormone replacement therapy in treating the adverse health consequences of menopause,” Menopause, vol. 10, no. 4, pp. 352–361, 2003. View at Scopus
  41. Y. Zhang, X. Zeng, L. Zhang, and X. Zheng, “Stimulatory effect of puerarin on bone formation through activation of PI3K/Akt pathway in rat calvaria osteoblasts,” Planta Medica, vol. 73, no. 4, pp. 341–347, 2007. View at Publisher · View at Google Scholar · View at Scopus
  42. N. Urasopon, Y. Hamada, K. Asaoka, W. Cherdshewasart, and S. Malaivijitnond, “Pueraria mirifica, a phytoestrogen-rich herb, prevents bone loss in orchidectomized rats,” Maturitas, vol. 56, no. 3, pp. 322–331, 2007. View at Publisher · View at Google Scholar · View at Scopus
  43. N. Urasopon, Y. Hamada, W. Cherdshewasart, and S. Malaivijitnond, “Preventive effects of Pueraria mirifica on bone loss in ovariectomized rats,” Maturitas, vol. 59, no. 2, pp. 137–148, 2008. View at Publisher · View at Google Scholar · View at Scopus
  44. C. Circosta, R. De Pasquale, D. R. Palumbo, S. Samperi, and F. Occhiuto, “Effects of isoflavones from red clover (Trifolium pratense) on skin changes induced by ovariectomy in rats,” Phytotherapy Research, vol. 20, no. 12, pp. 1096–1099, 2006. View at Publisher · View at Google Scholar · View at Scopus
  45. V. Beck, U. Rohr, and A. Jungbauer, “Phytoestrogens derived from red clover: an alternative to estrogen replacement therapy?” Journal of Steroid Biochemistry and Molecular Biology, vol. 94, no. 5, pp. 499–518, 2005. View at Publisher · View at Google Scholar · View at Scopus
  46. S. Geller and L. Studee, “Soy and red clover for mid-life and aging,” Climacteric, vol. 9, no. 4, pp. 245–263, 2006. View at Publisher · View at Google Scholar · View at Scopus
  47. S. Kawakita, F. Marotta, Y. Naito et al., “Effect of an isoflavones-containing red clover preparation and alkaline supplementation on bone metabolism in ovariectomized rats,” Clinical Interventions in Aging, vol. 4, no. 1, pp. 91–100, 2009. View at Scopus
  48. H. K. Kim, E. R. Woo, H. W. Lee et al., “The correlation of Salvia miltiorrhiza extract-induced regulation of osteoclastogenesis with the amount of components tanshinone I, tanshinone IIA, cryptotanshinone, and dihydrotanshinone,” Immunopharmacology and Immunotoxicology, vol. 30, no. 2, pp. 347–364, 2008. View at Publisher · View at Google Scholar · View at Scopus
  49. H. J. Chae, S. W. Chae, D. H. Yun, K. S. Keum, S. K. Yoo, and H. R. Kim, “Prevention of bone loss in ovariectomized rats: the effect of Salvia miltiorrhiza extracts,” Immunopharmacology and Immunotoxicology, vol. 26, no. 1, pp. 135–144, 2004. View at Publisher · View at Google Scholar · View at Scopus
  50. B. K. Han, D. Yang, H. Ha et al., “Tanshinone IIA inhibits osteoclast differentiation through down-regulation of c-Fos and NFATc1,” Experimental and Molecular Medicine, vol. 38, no. 3, pp. 256–264, 2006. View at Scopus
  51. L. Cui, Y. Y. Liu, T. Wu, C. M. Ai, and H. Q. Chen, “Osteogenic effects of D(+)β-3, 4-dihydroxyphenyl lactic acid (salvianic acid A, SAA) on osteoblasts and bone marrow stromal cells of intact and prednisone-treated rats,” Acta Pharmacologica Sinica, vol. 30, no. 3, pp. 321–332, 2009. View at Publisher · View at Google Scholar · View at Scopus
  52. L. Cui, T. Li, Y. Liu et al., “Salvianolic acid B prevents bone loss in prednisone-treated rats through stimulation osteogenensis and bone marrow angiogenesis,” PLoS One, vol. 7, no. 4, Article ID e34647, 2012. View at Publisher · View at Google Scholar
  53. S. M. Sacco, J. M. Y. Jiang, S. Reza-López, D. W. L. Ma, L. U. Thompson, and W. E. Ward, “Flaxseed combined with low-dose estrogen therapy preserves bone tissue in ovariectomized rats,” Menopause, vol. 16, no. 3, pp. 545–554, 2009. View at Publisher · View at Google Scholar · View at Scopus
  54. S. Boulbaroud, A. Mesfioui, A. Arfaoui, A. Ouichou, and A. El Hessni, “Preventive effects of flaxseed and sesame oil on bone loss in ovariectomized rats,” Pakistan Journal of Biological Sciences, vol. 11, no. 13, pp. 1696–1701, 2008. View at Publisher · View at Google Scholar · View at Scopus
  55. D. B. Kettler, “Can manipulation of the ratios of essential fatty acids slow the rapid rate of postmenopausal bone loss?” Alternative Medicine Review, vol. 6, no. 1, pp. 61–77, 2001. View at Scopus
  56. B. H. Arjmandi, “The role of phytoestrogens in the prevention and treatment of osteoporosis in ovarian hormone deficiency,” Journal of the American College of Nutrition, vol. 20, no. 5, supplement, pp. 398S–402S, 2001. View at Scopus
  57. J. C. Jeong, J. W. Lee, C. H. Yoon, H. M. Kim, and C. H. Kim, “Drynariae Rhizoma promotes osteoblast differentiation and mineralization in MC3T3-E1 cells through regulation of bone morphogenetic protein-2, alkaline phosphatase, type I collagen and collagenase-1,” Toxicology in vitro, vol. 18, no. 6, pp. 829–834, 2004. View at Publisher · View at Google Scholar · View at Scopus
  58. X. L. Wang, N. L. Wang, Y. Zhang et al., “Effects of eleven flavonoids from the osteoprotective fraction of Drynaria fortunei (Kunze) J. Sm. on osteoblastic proliferation using an osteoblast-like cell line,” Chemical and Pharmaceutical Bulletin, vol. 56, no. 1, pp. 46–51, 2008. View at Publisher · View at Google Scholar · View at Scopus
  59. X. Wang, L. Zhen, G. Zhang, M. S. Wong, L. Qin, and X. Yao, “Osteogenic effects of flavonoid aglycones from an osteoprotective fraction of Drynaria fortunei—an in vitro efficacy study,” Phytomedicine, vol. 18, no. 10, pp. 868–872, 2011. View at Publisher · View at Google Scholar · View at Scopus
  60. J. C. Eun, J. L. Won, H. C. Sung, and W. C. Sang, “Proliferative effects of flavan-3-ols and propelargonidins from rhizomes of Drynaria fortunei on MCF-7 and osteoblastic cells,” Archives of Pharmacal Research, vol. 26, no. 8, pp. 620–630, 2003. View at Scopus
  61. D. Guo, J. Wang, X. Wang et al., “Double directional adjusting estrogenic effect of naringin from Rhizoma drynariae (Gusuibu),” Journal of Ethnopharmacology, vol. 138, pp. 451–457, 2011.
  62. D. Seidlová-Wuttke, H. Jarry, T. Becker, V. Christoffel, and W. Wuttke, “Pharmacology of Cimicifuga racemosa extract BNO 1055 in rats: bone, fat and uterus,” Maturitas, vol. 44, supplement, pp. S39–S50, 2003. View at Publisher · View at Google Scholar · View at Scopus
  63. W. Wuttke, D. Seidlová-Wuttke, and C. Gorkow, “The Cimicifuga preparation BNO 1055 versus conjugated estrogens in a double-blind placebo-controlled study: effects on menopause symptoms and bone markers,” Maturitas, vol. 44, supplement, pp. S67–S77, 2003. View at Publisher · View at Google Scholar · View at Scopus
  64. E. M. Choi, “Deoxyactein stimulates osteoblast function and inhibits bone-resorbing mediators in MC3T3-E1 cells,” Journal of Applied Toxicology. In press. View at Publisher · View at Google Scholar
  65. V. Viereck, C. Gründker, S. C. Friess et al., “Isopropanolic extract of black cohosh stimulates osteoprotegerin production by human osteoblasts,” Journal of Bone and Mineral Research, vol. 20, no. 11, pp. 2036–2043, 2005. View at Publisher · View at Google Scholar · View at Scopus
  66. L. Kolios, J. Schumann, S. Sehmisch et al., “Effects of black cohosh (Cimicifuga racemosa) and estrogen on metaphyseal fracture healing in the early stage of osteoporosis in ovariectomized rats,” Planta Medica, vol. 76, no. 9, pp. 850–857, 2010. View at Publisher · View at Google Scholar · View at Scopus
  67. B. I. Seo, S. K. Ku, E. M. Cha et al., “Effect of Mornidae radix extracts on experimental osteoporosis in sciatic neurectomized mice,” Phytotherapy Research, vol. 19, no. 3, pp. 231–238, 2005. View at Publisher · View at Google Scholar · View at Scopus
  68. N. Li, L. P. Qin, T. Han, Y. B. Wu, Q. Y. Zhang, and H. Zhang, “Inhibitory effects of Morinda officinalis extract on bone loss in ovariectomized rats,” Molecules, vol. 14, no. 6, pp. 2049–2061, 2009. View at Publisher · View at Google Scholar · View at Scopus
  69. Z. MengYong, W. CaiJiao, Z. HuSheng, P. XianWu, and F. JianMin, “Protective effect of polysaccharides from Morinda officinalis on bone loss in ovariectomized rats,” International Journal of Biological Macromolecules, vol. 43, no. 3, pp. 276–278, 2008. View at Publisher · View at Google Scholar · View at Scopus
  70. Y. B. Wu, C. J. Zheng, L. P. Qin et al., “Antiosteoporotic activity of anthraquinones from Morinda officinalis on osteoblasts and osteoclasts,” Molecules, vol. 14, no. 1, pp. 573–583, 2009. View at Publisher · View at Google Scholar · View at Scopus
  71. L. Bao, L. Qin, L. Liu et al., “Anthraquinone compounds from Morinda officinalis inhibit osteoclastic bone resorption in vitro,” Chemico-Biological Interactions, vol. 194, no. 2-3, pp. 97–105, 2011.
  72. E. M. Choi, “Kaempferol protects MC3T3-E1 cells through antioxidant effect and regulation of mitochondrial function,” Food and Chemical Toxicology, vol. 49, no. 8, pp. 1800–1805, 2011.
  73. W. Liang, Z. Luo, S. Ge et al., “Oral administration of quercetin inhibits bone loss in rat model of diabetic osteopenia,” European Journal of Pharmacology, vol. 670, no. 1, pp. 317–324, 2011.
  74. J. Inoue, J. M. Choi, T. Yoshidomi, T. Yashiro, and R. Sato, “Quercetin enhances VDR activity, leading to stimulation of its target gene expression in Caco-2 Cells,” Journal of Nutritional Science and Vitaminology, vol. 56, no. 5, pp. 326–330, 2010. View at Publisher · View at Google Scholar · View at Scopus
  75. P. Zhang, K. R. Dai, S. G. Yan et al., “Effects of naringin on the proliferation and osteogenic differentiation of human bone mesenchymal stem cell,” European Journal of Pharmacology, vol. 607, no. 1–3, pp. 11–15, 2009.
  76. J. B. Wu, Y. C. Fong, H. Y. Tsai, Y. F. Chen, M. Tsuzuki, and C. H. Tang, “Naringin-induced bone morphogenetic protein-2 expression via PI3K, Akt, c-Fos/c-Jun and AP-1 pathway in osteoblasts,” European Journal of Pharmacology, vol. 588, no. 2-3, pp. 333–341, 2008. View at Publisher · View at Google Scholar · View at Scopus
  77. E. S. Ang, X. Yang, H. Chen, Q. Liu, M. H. Zheng, and J. Xu, “Naringin abrogates osteoclastogenesis and bone resorption via the inhibition of RANKL-induced NF-kappaB and ERK activation,” FEBS Letters, vol. 585, no. 17, pp. 2755–2762, 2011.
  78. M. N. Horcajada, V. Habauzit, A. Trzeciakiewicz et al., “Hesperidin inhibits ovariectomized-induced osteopenia and shows differential effects on bone mass and strength in young and adult intact rats,” Journal of Applied Physiology, vol. 104, no. 3, pp. 648–654, 2008. View at Publisher · View at Google Scholar · View at Scopus
  79. Y. H. Kim, Y. S. Lee, and E. M. Choi, “Linarin isolated from Buddleja officinalis prevents hydrogen peroxide-induced dysfunction in osteoblastic MC3T3-E1 cells,” Cellular Immunology, vol. 268, no. 2, pp. 112–116, 2011. View at Publisher · View at Google Scholar · View at Scopus
  80. M. N. Horcajada-Molteni, V. Crespy, V. Coxam, M. J. Davicco, C. Remesy, and J. P. Barlet, “Rutin inhibits ovariectomy-induced osteopenia in rats,” Journal of Bone and Mineral Research, vol. 15, no. 11, pp. 2251–2258, 2000. View at Scopus
  81. E. M. Choi and J. K. Hwang, “Effects of (+)-catechin on the function of osteoblastic cells,” Biological and Pharmaceutical Bulletin, vol. 26, no. 4, pp. 523–526, 2003. View at Scopus
  82. S. Harada, T. Tominari, C. Matsumoto et al., “Nobiletin, a polymethoxy flavonoid, suppresses bone resorption by inhibiting NFκB-dependent prostaglandin E synthesis in osteoblasts and prevents bone loss due to estrogen deficiency,” Journal of Pharmacological Sciences, vol. 115, no. 1, pp. 89–93, 2011. View at Publisher · View at Google Scholar · View at Scopus
  83. T. H. Kim, J. W. Jung, B. G. Ha et al., “The effects of luteolin on osteoclast differentiation, function in vitro and ovariectomy-induced bone loss,” Journal of Nutritional Biochemistry, vol. 22, no. 1, pp. 8–15, 2011. View at Publisher · View at Google Scholar · View at Scopus
  84. M. H. Kim, S. Y. Ryu, M. A. Bae, J. S. Choi, Y. K. Min, and S. H. Kim, “Baicalein inhibits osteoclast differentiation and induces mature osteoclast apoptosis,” Food and Chemical Toxicology, vol. 46, no. 11, pp. 3375–3382, 2008. View at Publisher · View at Google Scholar · View at Scopus
  85. A. J. Guo, R. C. Choi, A. W. Cheung et al., “Baicalin, a flavone, induces the differentiation of cultured osteoblasts: an action via the Wnt/beta-catenin signaling pathway,” Journal of Biological Chemistry, vol. 286, no. 32, pp. 27882–27893, 2011.
  86. H. M. Jeong, E. H. Han, Y. H. Jin, Y. H. Choi, K. Y. Lee, and H. G. Jeong, “Xanthohumol from the hop plant stimulates osteoblast differentiation by RUNX2 activation,” Biochemical and Biophysical Research Communications, vol. 409, no. 1, pp. 82–89, 2011. View at Publisher · View at Google Scholar · View at Scopus
  87. Q. Zhang, L. Qin, W. He et al., “Coumarins from Cnidium monnieri and their antiosteoporotic activity,” Planta Medica, vol. 73, no. 1, pp. 13–19, 2007. View at Publisher · View at Google Scholar · View at Scopus
  88. E. M. Choi, “Honokiol isolated from Magnolia officinalis stimulates osteoblast function and inhibits the release of bone-resorbing mediators,” International Immunopharmacology, vol. 11, no. 10, pp. 1541–1545, 2011. View at Publisher · View at Google Scholar · View at Scopus
  89. E. M. Choi, “Honokiol protects osteoblastic MC3T3-E1 cells against antimycin A-induced cytotoxicity,” Inflammation Research, vol. 60, no. 11, pp. 1005–1012, 2011. View at Publisher · View at Google Scholar · View at Scopus
  90. J. Yin, Y. Tezuka, Subehan et al., “In vivo anti-osteoporotic activity of isotaxiresinol, a lignan from wood of Taxus yunnanensis,” Phytomedicine, vol. 13, no. 1-2, pp. 37–42, 2006. View at Publisher · View at Google Scholar · View at Scopus
  91. E. M. Choi, “Magnolol protects osteoblastic MC3T3-E1 cells against antimycin A-induced cytotoxicity through activation of mitochondrial function,” Inflammation, vol. 35, no. 3, pp. 1204–1212, 2012.
  92. L. H. Song, W. Pan, Y. H. Yu, L. D. Quarles, H. H. Zhou, and Z. S. Xiao, “Resveratrol prevents CsA inhibition of proliferation and osteoblastic differentiation of mouse bone marrow-derived mesenchymal stem cells through an ER/NO/cGMP pathway,” Toxicology in Vitro, vol. 20, no. 6, pp. 915–922, 2006. View at Publisher · View at Google Scholar · View at Scopus
  93. X. He, G. Andersson, U. Lindgren, and Y. Li, “Resveratrol prevents RANKL-induced osteoclast differentiation of murine osteoclast progenitor RAW 264.7 cells through inhibition of ROS production,” Biochemical and Biophysical Research Communications, vol. 401, no. 3, pp. 356–362, 2010. View at Publisher · View at Google Scholar · View at Scopus
  94. M. Shakibaei, C. Buhrmann, and A. Mobasheri, “Resveratrol-mediated SIRT-1 interactions with p300 modulate receptor activator of NF-κB ligand (RANKL) activation of NF-κB Signaling and inhibit osteoclastogenesis in bone-derived cells,” Journal of Biological Chemistry, vol. 286, no. 13, pp. 11492–11505, 2011. View at Publisher · View at Google Scholar · View at Scopus
  95. P. C. Tseng, S. M. Hou, R. J. Chen et al., “Resveratrol promotes osteogenesis of human mesenchymal stem cells by upregulating RUNX2 gene expression via the SIRT1/FOXO3A axis,” Journal of Bone and Mineral Research, vol. 26, no. 10, pp. 2552–2563, 2011.
  96. M. W. Yang, T. H. Wang, P. P. Yan et al., “Curcumin improves bone microarchitecture and enhances mineral density in APP/PS1 transgenic mice,” Phytomedicine, vol. 18, no. 2-3, pp. 205–213, 2011. View at Publisher · View at Google Scholar · View at Scopus
  97. D. L. French, J. M. Muir, and C. E. Webber, “The ovariectomized, mature rat model of postmenopausal osteoporosis: an assessment of the bone sparing effects of curcumin,” Phytomedicine, vol. 15, no. 12, pp. 1069–1078, 2008. View at Publisher · View at Google Scholar · View at Scopus
  98. W. K. Kim, K. Ke, O. J. Sul et al., “Curcumin protects against ovariectomy-induced bone loss and decreases osteoclastogenesis,” Journal of Cellular Biochemistry, vol. 112, no. 11, pp. 3159–3166, 2011.
  99. M. Kamon, R. Zhao, and K. Sakamoto, “Green tea polyphenol (−)-epigallocatechin gallate suppressed the differentiation of murine osteoblastic MC3T3-E1 cells,” Cell Biology International, vol. 34, no. 1, pp. 109–116, 2010. View at Publisher · View at Google Scholar · View at Scopus
  100. C. L. Shen, P. Wang, J. Guerrieri, J. K. Yeh, and J. S. Wang, “Protective effect of green tea polyphenols on bone loss in middle-aged female rats,” Osteoporosis International, vol. 19, no. 7, pp. 979–990, 2008. View at Publisher · View at Google Scholar · View at Scopus
  101. T. Yonezawa, S. I. Hasegawa, M. Asai et al., “Harmine, a β-carboline alkaloid, inhibits osteoclast differentiation and bone resorption in vitro and in vivo,” European Journal of Pharmacology, vol. 650, no. 2-3, pp. 511–518, 2011. View at Publisher · View at Google Scholar · View at Scopus
  102. J. W. Lee, A. Iwahashi, S. I. Hasegawa et al., “Coptisine inhibits RANKL-induced NF-κB phosphorylation in osteoclast precursors and suppresses function through the regulation of RANKL and OPG gene expression in osteoblastic cells,” Journal of Natural Medicines, vol. 66, no. 1, pp. 8–16, 2011. View at Publisher · View at Google Scholar · View at Scopus
  103. J. W. Lee, N. Mase, T. Yonezawa et al., “Palmatine attenuates osteoclast differentiation and function through inhibition of receptor activator of nuclear factor-κB ligand expression in osteoblast cells,” Biological and Pharmaceutical Bulletin, vol. 33, no. 10, pp. 1733–1739, 2010. View at Scopus
  104. H. Li, T. Miyahara, Y. Tezuka, Q. Le Tran, H. Seto, and S. Kadota, “Effect of berberine on bone mineral density in SAMP6 as a senile osteoporosis model,” Biological and Pharmaceutical Bulletin, vol. 26, no. 1, pp. 110–111, 2003. View at Publisher · View at Google Scholar · View at Scopus
  105. W. L. Hyun, H. S. Jung, H. N. Kim et al., “Berberine promotes osteoblast differentiation by Runx2 activation with p38 MAPK,” Journal of Bone and Mineral Research, vol. 23, no. 8, pp. 1227–1237, 2008. View at Publisher · View at Google Scholar · View at Scopus
  106. L. Jiao, D. P. Cao, L. P. Qin et al., “Antiosteoporotic activity of phenolic compounds from Curculigo orchioides,” Phytomedicine, vol. 16, no. 9, pp. 874–881, 2009. View at Publisher · View at Google Scholar · View at Scopus
  107. Y. Wang, L. Zhao, Y. Wang et al., “Curculigoside isolated from Curculigo orchioides prevents hydrogen peroxide-induced dysfunction and oxidative damage in calvarial osteoblasts,” Acta Biochimica et Biophysica Sinica, vol. 44, no. 5, pp. 431–441, 2012.
  108. Y. Niu, Y. Li, H. Huang et al., “Asperosaponin VI, a saponin component from Dipsacus asper wall, induces osteoblast differentiation through bone morphogenetic protein-2/p38 and extracellular signal-regulated kinase 1/2 pathway,” Phytotherapy Research, vol. 25, no. 11, pp. 1700–1706, 2011. View at Publisher · View at Google Scholar · View at Scopus
  109. C. Wisutsitthiwong, C. Buranaruk, K. Pudhom, and T. Palaga, “The plant limonoid 7-oxo-deacetoxygedunin inhibits RANKL-induced osteoclastogenesis by suppressing activation of the NF-kappaB and MAPK pathways,” Biochemical and Biophysical Research Communications, vol. 415, no. 2, pp. 361–366, 2011.
  110. B. Sung, A. Murakami, B. O. Oyajobi, and B. B. Aggarwal, “Zerumbone abolishes RaNKL-induced NF-κB activation, inhibits osteoclastogenesis, and suppresses human breast cancer-induced bone loss in athymic nude mice,” Cancer Research, vol. 69, no. 4, pp. 1477–1484, 2009. View at Publisher · View at Google Scholar · View at Scopus
  111. Y. S. Lee and E. M. Choi, “Costunolide stimulates the function of osteoblastic MC3T3-E1 cells,” International Immunopharmacology, vol. 11, no. 6, pp. 712–718, 2011. View at Publisher · View at Google Scholar · View at Scopus
  112. S. Sahni, M. T. Hannan, J. Blumberg, L. A. Cupples, D. P. Kiel, and K. L. Tucker, “Protective effect of total carotenoid and lycopene intake on the risk of hip fracture: a 17-year follow-up from the Framingham osteoporosis atudy,” Journal of Bone and Mineral Research, vol. 24, no. 6, pp. 1086–1094, 2009. View at Publisher · View at Google Scholar · View at Scopus
  113. E. S. MacKinnon, A. V. Rao, R. G. Josse, and L. G. Rao, “Supplementation with the antioxidant lycopene significantly decreases oxidative stress parameters and the bone resorption marker N-telopeptide of type i collagen in postmenopausal women,” Osteoporosis International, vol. 22, no. 4, pp. 1091–1101, 2011. View at Publisher · View at Google Scholar · View at Scopus
  114. J. W. Lee, Y. Kobayashi, Y. Nakamichi et al., “Alisol-B, a novel phyto-steroid, suppresses the RANKL-induced osteoclast formation and prevents bone loss in mice,” Biochemical Pharmacology, vol. 80, no. 3, pp. 352–361, 2010. View at Publisher · View at Google Scholar · View at Scopus
  115. C. Li, Z. Yang, Z. Li et al., “Maslinic acid suppresses osteoclastogenesis and prevents ovariectomy-induced bone loss by regulating RANKL-mediated NF-κB and MAPK signaling pathways,” Journal of Bone and Mineral Research, vol. 26, no. 3, pp. 644–656, 2011. View at Publisher · View at Google Scholar · View at Scopus
  116. L. G. Raisz, “The osteoporosis revolution,” Annals of Internal Medicine, vol. 126, no. 6, pp. 458–462, 1997. View at Scopus
  117. P. D. O'Loughlin and H. A. Morris, “Oestrogen deficiency impairs intestinal calcium absorption in the rat,” Journal of Physiology, vol. 511, no. 1, pp. 313–322, 1998. View at Publisher · View at Google Scholar · View at Scopus
  118. J. M. Lean, J. T. Davies, K. Fuller et al., “A crucial role for thiol antioxidants in estrogen-deficiency bone loss,” Journal of Clinical Investigation, vol. 112, no. 6, pp. 915–923, 2003. View at Publisher · View at Google Scholar · View at Scopus
  119. C. Puel, A. Quintin, A. Agalias et al., “Olive oil and its main phenolic micronutrient (oleuropein) prevent inflammation-induced bone loss in the ovariectomised rat,” British Journal of Nutrition, vol. 92, no. 1, pp. 119–127, 2004. View at Publisher · View at Google Scholar · View at Scopus
  120. M. Xu, C. Qi, B. Deng, P. X. Deng, and C. W. Mo, “Phytotherapy versus hormonal therapy for postmenopausal bone loss: a meta-analysis,” Osteoporosis International, vol. 20, no. 4, pp. 519–526, 2009. View at Publisher · View at Google Scholar · View at Scopus
  121. G. Resmini and G. Iolascon, “New insights into the teriparatide,” Aging Clinical and Experimental Research, vol. 23, no. 2, supplement, pp. 30–32, 2011.
  122. S. C. Man, K. W. Chan, J. H. Lu et al., “Systematic review on the efficacy and safety of herbal medicines for vascular dementia,” Evidence-Based Complementary and Alternative Medicine, vol. 2012, Article ID 426215, 22 pages, 2012. View at Publisher · View at Google Scholar
  123. C. C. He, R. R. Hui, Y. Tezuka, S. Kadota, and J. X. Li, “Osteoprotective effect of extract from Achyranthes bidentata in ovariectomized rats,” Journal of Ethnopharmacology, vol. 127, no. 2, pp. 229–234, 2010. View at Publisher · View at Google Scholar · View at Scopus
  124. R. Zhang, S. J. Hu, C. Li, F. Zhang, H. Q. Gan, and Q. B. Mei, “Achyranthes bidentata root extract prevent OVX-induced osteoporosis in rats,” Journal of Ethnopharmacology, vol. 139, no. 1, pp. 12–18, 2010.
  125. D. P. Cao, Y. N. Zheng, L. P. Qin et al., “Curculigo orchioides, a traditional Chinese medicinal plant, prevents bone loss in ovariectomized rats,” Maturitas, vol. 59, no. 4, pp. 373–380, 2008. View at Publisher · View at Google Scholar · View at Scopus
  126. J. M. Liao, Q. A. Zhu, H. J. Lu, Q. N. Li, T. Wu, and L. F. Huang, “Effects of total coumarins of Cnidium monnieri on bone density and biomechanics of glucocorticoids-induced osteoporosis in rats,” Acta Pharmacologica Sinica, vol. 18, no. 6, pp. 519–521, 1997. View at Scopus
  127. C. Y. Li, T. Wu, Q. N. Li et al., “Effects of fructus Cnidii coumarins compared with nilestriol on osteoporosis in ovariectomized rats,” Zhongguo Yao Li Xue Bao, vol. 18, no. 3, pp. 286–288, 1997. View at Scopus
  128. S. S. Shirke, S. R. Jadhav, and A. G. Jagtap, “Methanolic extract of cuminum cyminum inhibits ovariectomy-induced bone loss in rats,” Experimental Biology and Medicine, vol. 233, no. 11, pp. 1403–1410, 2008. View at Publisher · View at Google Scholar · View at Scopus
  129. M. Ferretti, L. Bertoni, F. Cavani et al., “Influence of ferutinin on bone metabolism in ovariectomized rats. II: role in recovering osteoporosis,” Journal of Anatomy, vol. 217, no. 1, pp. 48–56, 2010. View at Publisher · View at Google Scholar · View at Scopus
  130. Q. Yang, S. M. Populo, J. Zhang, G. Yang, and H. Kodama, “Effect of Angelica sinensis on the proliferation of human bone cells,” Clinica Chimica Acta, vol. 324, no. 1-2, pp. 89–97, 2002. View at Publisher · View at Google Scholar · View at Scopus
  131. Y. Shen, Y. Q. Li, S. P. Li, L. Ma, L. J. Ding, and H. Ji, “Alleviation of ovariectomy-induced osteoporosis in rats by Panax notoginseng saponins,” Journal of Natural Medicines, vol. 64, no. 3, pp. 336–345, 2010. View at Publisher · View at Google Scholar · View at Scopus
  132. X. D. Li, J. S. Wang, B. Chang et al., “Panax notoginseng saponins promotes proliferation and osteogenic differentiation of rat bone marrow stromal cells,” Journal of Ethnopharmacology, vol. 134, no. 2, pp. 268–274, 2011. View at Publisher · View at Google Scholar · View at Scopus
  133. Y. C. Hwang, I. K. Jeong, K. J. Ahn, and H. Y. Chung, “The effects of Acanthopanax senticosus extract on bone turnover and bone mineral density in Korean postmenopausal women,” Journal of Bone and Mineral Metabolism, vol. 27, no. 5, pp. 584–590, 2009. View at Publisher · View at Google Scholar · View at Scopus
  134. H. S. Yogesh, V. M. Chandrashekhar, H. R. Katti et al., “Anti-osteoporotic activity of aqueous-methanol extract of Berberis aristata in ovariectomized rats,” Journal of Ethnopharmacology, vol. 134, no. 2, pp. 334–338, 2011. View at Publisher · View at Google Scholar · View at Scopus
  135. V. M. Pattell, Berberis Aristata Plants Extracts for Treating Osteoporosis and the Extraction Process Thereof, Avestha Gengraine Technologies PVT, 2008, http://patentscope.wipo.int/search/en/WO2008007215.
  136. Y. Zhang, L. Yu, M. Ao, and W. Jin, “Effect of ethanol extract of Lepidium meyenii Walp. on osteoporosis in ovariectomized rat,” Journal of Ethnopharmacology, vol. 105, no. 1-2, pp. 274–279, 2006. View at Publisher · View at Google Scholar · View at Scopus
  137. G. F. Gonzales, “Ethnobiology and ethnopharmacology of Lepidium meyenii (Maca), a plant from the Peruvian Highlands,” Evidence-Based Complementary and Alternative Medicine, vol. 2012, Article ID 193496, 10 pages, 2012. View at Publisher · View at Google Scholar
  138. H. M. Jeong, E. H. Han, Y. H. Jin et al., “Saponins from the roots of Platycodon grandiflorum stimulate osteoblast differentiation via p38 MAPK- and ERK-dependent RUNX2 activation,” Food and Chemical Toxicology, vol. 48, no. 12, pp. 3362–3368, 2010. View at Publisher · View at Google Scholar · View at Scopus
  139. Y. Zhang, Q. Li, H. Y. Wan et al., “Study of the mechanisms by which Sambucus williamsii HANCE extract exert protective effects against ovariectomy-induced osteoporosis in vivo,” Osteoporosis International, vol. 22, no. 2, pp. 703–709, 2011. View at Publisher · View at Google Scholar · View at Scopus
  140. H. J. Kim, Y. C. Bae, R. W. Park et al., “Bone-protecting effect of safflower seeds in ovariectomized rats,” Calcified Tissue International, vol. 71, no. 1, pp. 88–94, 2002. View at Publisher · View at Google Scholar · View at Scopus
  141. Y. S. Lee, C. W. Choi, J. J. Kim, A. Ganapathi, R. Udayakumar, and S. C. Kim, “Determination of mineral content in methanolic safflower (Carthamus tinctorius L.) seed extract and its effect on osteoblast markers,” International Journal of Molecular Sciences, vol. 10, no. 1, pp. 292–305, 2009. View at Publisher · View at Google Scholar · View at Scopus
  142. J. L. Kim, S. W. Kang, M. K. Kang et al., “Osteoblastogenesis and osteoprotection enhanced by flavonolignan silibinin in osteoblasts and osteoclasts,” Journal of Cellular Biochemistry, vol. 113, no. 1, pp. 247–259, 2012.
  143. N. A. El-Shitany, S. Hegazy, and K. El-desoky, “Evidences for antiosteoporotic and selective estrogen receptor modulator activity of silymarin compared with ethinylestradiol in ovariectomized rats,” Phytomedicine, vol. 17, no. 2, pp. 116–125, 2010. View at Publisher · View at Google Scholar · View at Scopus
  144. S. Annie, R. G. Prabhu, and S. Malini, “Activity of Wedelia calendulacea Less. in post-menopausal osteoporosis,” Phytomedicine, vol. 13, no. 1-2, pp. 43–48, 2006. View at Publisher · View at Google Scholar · View at Scopus
  145. Y. Ding, C. Liang, S. Y. Yang et al., “Phenolic compounds from Artemisia iwayomogi and their effects on osteoblastic MC3T3-E1 cells,” Biological and Pharmaceutical Bulletin, vol. 33, no. 8, pp. 1448–1453, 2010. View at Publisher · View at Google Scholar · View at Scopus
  146. L. Yang, Q. Chen, F. Wang, and G. Zhang, “Antiosteoporotic compounds from seeds of Cuscuta chinensis,” Journal of Ethnopharmacology, vol. 135, no. 2, pp. 553–560, 2011. View at Publisher · View at Google Scholar · View at Scopus
  147. H. M. Yang, H. K. Shin, Y. H. Kang, and J. K. Kim, “Cuscuta chinensis extract promotes osteoblast differentiation and mineralization in human osteoblast-like MG-63 cells,” Journal of Medicinal Food, vol. 12, no. 1, pp. 85–92, 2009. View at Publisher · View at Google Scholar · View at Scopus
  148. Y. J. Ko, J. B. Wu, H. Y. Ho, and W. C. Lin, “Antiosteoporotic activity of Davallia formosana,” Journal of Ethnopharmacology, vol. 139, pp. 558–565, 2012.
  149. X. Zhao, Z. X. Wu, Y. Zhang et al., “Anti-osteoporosis activity of Cibotium barometz extract on ovariectomy-induced bone loss in rats,” Journal of Ethnopharmacology, vol. 137, no. 3, pp. 1083–1088, 2011.
  150. K. Y. Peng, L. Y. Horng, H. C. Sung, H. C. Huang, and R. T. Wu, “Antiosteoporotic activity of Dioscorea alata L. cv. phyto through driving mesenchymal stem cells differentiation for bone formation,” Evidence-Based Complementary and Alternative Medicine, vol. 2011, Article ID 712892, 12 pages, 2011. View at Publisher · View at Google Scholar
  151. J. Yin, Y. Tezuka, K. Kouda et al., “Antiosteoporotic activity of the water extract of Dioscorea spongiosa,” Biological and Pharmaceutical Bulletin, vol. 27, no. 4, pp. 583–586, 2004. View at Publisher · View at Google Scholar · View at Scopus
  152. J. Yin, Y. Tezuka, K. Kouda et al., “In vivo antiosteoporotic activity of a fraction of Dioscorea spongiosa and its constituent, 22-O-methylprotodioscin,” Planta Medica, vol. 70, no. 3, pp. 220–226, 2004. View at Publisher · View at Google Scholar · View at Scopus
  153. Z. G. Liu, R. Zhang, C. Li et al., “The osteoprotective effect of Radix Dipsaci extract in ovariectomized rats,” Journal of Ethnopharmacology, vol. 123, no. 1, pp. 74–81, 2009. View at Publisher · View at Google Scholar · View at Scopus
  154. L. Devareddy, S. Hooshmand, J. K. Collins, E. A. Lucas, S. C. Chai, and B. H. Arjmandi, “Blueberry prevents bone loss in ovariectomized rat model of postmenopausal osteoporosis,” Journal of Nutritional Biochemistry, vol. 19, no. 10, pp. 694–699, 2008. View at Publisher · View at Google Scholar · View at Scopus
  155. H. Ha, J. Ho, S. Shin et al., “Effects of Eucommiae cortex on osteoblast-like cell proliferation and osteoclast inhibition,” Archives of Pharmacal Research, vol. 26, no. 11, pp. 929–936, 2003. View at Scopus
  156. R. Zhang, Z. G. Liu, C. Li et al., “Du-Zhong (Eucommia ulmoides Oliv.) cortex extract prevent OVX-induced osteoporosis in rats,” Bone, vol. 45, no. 3, pp. 553–559, 2009. View at Publisher · View at Google Scholar · View at Scopus
  157. Y. Li, M. J. Wang, S. Li et al., “Effect of total glycosides from Eucommia ulmoides seed on bone microarchitecture in rats,” Phytotherapy Research, vol. 25, no. 12, pp. 1895–1897, 2011. View at Publisher · View at Google Scholar · View at Scopus
  158. L. Penolazzi, I. Lampronti, M. Borgatti et al., “Induction of apoptosis of human primary osteoclasts treated with extracts from the medicinal plant Emblica officinalis,” BMC Complementary and Alternative Medicine, vol. 8, article no. 59, pp. 59–71, 2008. View at Publisher · View at Google Scholar · View at Scopus
  159. Y. Zhang, Q. Li, X. Li, H. Y. Wan, and M. S. Wong, “Erythrina variegata extract exerts osteoprotective effects by suppression of the process of bone resorption,” British Journal of Nutrition, vol. 104, no. 7, pp. 965–971, 2010. View at Publisher · View at Google Scholar · View at Scopus
  160. Y. Zhang, X. L. Li, W. P. Lai et al., “Anti-osteoporotic effect of Erythrina variegata L. in ovariectomized rats,” Journal of Ethnopharmacology, vol. 109, no. 1, pp. 165–169, 2007. View at Publisher · View at Google Scholar · View at Scopus
  161. I. Dontas, M. Halabalaki, P. Moutsatsou et al., “Protective effect of plant extract from Onobrychis ebenoides on ovariectomy-induced bone loss in rats,” Maturitas, vol. 53, no. 2, pp. 234–242, 2006. View at Publisher · View at Google Scholar · View at Scopus
  162. M. Halabalaki, X. Alexi, N. Aligiannis et al., “Estrogenic activity of isoflavonoids from Onobrychis ebenoides,” Planta Medica, vol. 72, no. 6, pp. 488–493, 2006. View at Publisher · View at Google Scholar · View at Scopus
  163. Z. Papoutsi, E. Kassi, D. Papaevangeliou et al., “Plant 2-arylobenzofurans demonstrate a selective estrogen receptor modulator profile,” Steroids, vol. 69, no. 11-12, pp. 727–734, 2004. View at Publisher · View at Google Scholar · View at Scopus
  164. J. Kim, S. J. Um, J. Woo et al., “Comparative effect of seeds of Rhynchosia volubilis and soybean on MG-63 human osteoblastic cell proliferation and estrogenicity,” Life Sciences, vol. 78, no. 1, pp. 30–40, 2005. View at Publisher · View at Google Scholar · View at Scopus
  165. S. S. Joo, T. J. Won, H. C. Kang, and D. I. Lee, “Isoflavones extracted from Sophorae fructus upregulate IGF-I and TGF-β and inhibit osteoclastogenesis in rat born marrow cells,” Archives of Pharmacal Research, vol. 27, no. 1, pp. 99–105, 2004. View at Scopus
  166. S. S. Joo, H. C. Kang, M. W. Lee, Y. W. Choi, and D. I. Lee, “Inhibition of IL-1beta and IL-6 in osteoblast-like cell by isoflavones extracted from Sophorae fructus,” Archives of Pharmacal Research, vol. 26, no. 12, pp. 1029–1035, 2003. View at Scopus
  167. R. Pandey, A. K. Gautam, B. Bhargavan et al., “Total extract and standardized fraction from the stem bark of Butea monosperma have osteoprotective action: evidence for the nonestrogenic osteogenic effect of the standardized fraction,” Menopause, vol. 17, no. 3, pp. 602–610, 2010. View at Publisher · View at Google Scholar · View at Scopus
  168. S. S. Shirke, S. R. Jadhav, and A. G. Jagtap, “Osteoprotective effect of Phaseolus vulgaris L in ovariectomy-induced osteopenia in rats,” Menopause, vol. 16, no. 3, pp. 589–596, 2009. View at Publisher · View at Google Scholar · View at Scopus
  169. L. M. F. Lucinda, B. J. Vieira, T. T. Oliveira et al., “Evidences of osteoporosis improvement in Wistar rats treated with Ginkgo biloba extract: a histomorphometric study of mandible and femur,” Fitoterapia, vol. 81, no. 8, pp. 982–987, 2010. View at Publisher · View at Google Scholar · View at Scopus
  170. S. M. Oh, H. R. Kim, and K. H. Chung, “Effects of Ginkgo biloba on in vitro osteoblast cells and ovariectomized rat osteoclast cells,” Archives of Pharmacal Research, vol. 31, no. 2, pp. 216–224, 2008. View at Publisher · View at Google Scholar · View at Scopus
  171. Z. Papoutsi, E. Kassi, I. Chinou, M. Halabalaki, L. A. Skaltsounis, and P. Moutsatsou, “Walnut extract (Juglans regia L.) and its component ellagic acid exhibit anti-inflammatory activity in human aorta endothelial cells and osteoblastic activity in the cell line KS483,” British Journal of Nutrition, vol. 99, no. 4, pp. 715–722, 2008. View at Publisher · View at Google Scholar · View at Scopus
  172. Y. Ono, Y. Fukaya, S. Imai, and T. Yamakuni, “Beneficial effects of Ajuga decumbens on osteoporosis and arthritis,” Biological and Pharmaceutical Bulletin, vol. 31, no. 6, pp. 1199–1204, 2008. View at Publisher · View at Google Scholar · View at Scopus
  173. K. H. Lee and E. M. Choi, “Stimulatory effects of extract prepared from the bark of Cinnamomum cassia blume on the function of osteoblastic MC3T3-E1 cells,” Phytotherapy Research, vol. 20, no. 11, pp. 952–960, 2006. View at Publisher · View at Google Scholar · View at Scopus
  174. C. H. Tang, T. H. Huang, C. S. Chang, W. M. Fu, and R. S. Yang, “Water solution of onion crude powder inhibits RANKL-induced osteoclastogenesis through ERK, p38 and NF-κB pathways,” Osteoporosis International, vol. 20, no. 1, pp. 93–103, 2009. View at Publisher · View at Google Scholar · View at Scopus
  175. M. Mukherjee, A. S. Das, S. Mitra, and C. Mitra, “Prevention of bone loss by oil extract of garlic (Allium sativum Linn.) in an ovariectomized rat model of osteoporosis,” Phytotherapy Research, vol. 18, no. 5, pp. 389–394, 2004. View at Publisher · View at Google Scholar · View at Scopus
  176. H. Nian, L. P. Qin, W. S. Chen, Q. Y. Zhang, H. C. Zheng, and Y. Wang, “Protective effect of steroidal saponins from rhizome of Anemarrhena asphodeloides on ovariectomy-induced bone loss in rats,” Acta Pharmacologica Sinica, vol. 27, no. 6, pp. 728–734, 2006. View at Publisher · View at Google Scholar · View at Scopus
  177. G. F. Zeng, Z. Y. Zhang, L. Lu et al., “Protective effects of Polygonatum sibiricum polysaccharide on ovariectomy-induced bone loss in rats,” Journal of Ethnopharmacology, vol. 136, no. 1, pp. 224–229, 2011. View at Publisher · View at Google Scholar · View at Scopus
  178. N. Ayoub, A. N. Singab, M. El-Naggar, and U. Lindequist, “Investigation of phenolic leaf extract of Heimia myrtifolia (Lythraceae): pharmacological properties (stimulation of mineralization of SaOS-2 osteosarcoma cells) and identification of polyphenols,” Drug Discoveries and Therapeutics, vol. 4, no. 5, pp. 341–348, 2010.
  179. C. Puel, J. Mathey, S. Kati-Coulibaly et al., “Preventive effect of Abelmoschus manihot (L.) Medik. on bone loss in the ovariectomised rats,” Journal of Ethnopharmacology, vol. 99, no. 1, pp. 55–60, 2005. View at Publisher · View at Google Scholar · View at Scopus
  180. P. Kapur, H. Jarry, W. Wuttke, B. M. J. Pereira, and D. Seidlova-Wuttke, “Evaluation of the antiosteoporotic potential of Tinospora cordifolia in female rats,” Maturitas, vol. 59, no. 4, pp. 329–338, 2008. View at Publisher · View at Google Scholar · View at Scopus
  181. A. N. Shuid, L. L. Ping, N. Muhammad, N. Mohamed, and I. N. Soelaiman, “The effects of Labisia pumila var. alata on bone markers and bone calcium in a rat model of post-menopausal osteoporosis,” Journal of Ethnopharmacology, vol. 133, no. 2, pp. 538–542, 2011. View at Publisher · View at Google Scholar · View at Scopus
  182. Y. Zhang, W. P. Lai, P. C. Leung, C. F. Wu, X. S. Yao, and M. S. Wong, “Effects of Fructus Ligustri Lucidi extract on bone turnover and calcium balance in ovariectomized rats,” Biological and Pharmaceutical Bulletin, vol. 29, no. 2, pp. 291–296, 2006. View at Publisher · View at Google Scholar
  183. X. L. Dong, Y. Zhang, M. J. Favus, C. T. Che, and M. S. Wong, “Ethanol extract of Fructus Ligustri Lucidi increases circulating 1,25-dihydroxyvitamin D3 by inducing renal 25-hydroxyvitamin D-1α hydroxylase activity,” Menopause, vol. 17, no. 6, pp. 1174–1181, 2010. View at Publisher · View at Google Scholar · View at Scopus
  184. K. Masuda, M. Ikeuchi, T. Koyama et al., “Suppressive effects of Anoectochilus formosanus extract on osteoclast formation in vitro and bone resorption in vivo,” Journal of Bone and Mineral Metabolism, vol. 26, no. 2, pp. 123–129, 2008. View at Publisher · View at Google Scholar · View at Scopus
  185. H. Liang, F. Yu, Z. Tong, and Z. Huang, “Effect of cistanches herba aqueous extract on bone loss in ovariectomized rat,” International Journal of Molecular Sciences, vol. 12, no. 8, pp. 5060–5069, 2011.
  186. S. W. Kim, H. G. Kim, B. E. Lee, H. H. Hwang, D. H. Baek, and S. Y. Ko, “Effects of mushroom, Pleurotus eryngii, extracts on bone metabolism,” Clinical Nutrition, vol. 25, no. 1, pp. 166–170, 2006. View at Publisher · View at Google Scholar · View at Scopus
  187. J. Mori-Okamoto, Y. Otawara-Hamamoto, H. Yamato, and H. Yoshimura, “Pomegranate extract improves a depressive state and bone properties in menopausal syndrome model ovariectomized mice,” Journal of Ethnopharmacology, vol. 92, no. 1, pp. 93–101, 2004. View at Publisher · View at Google Scholar · View at Scopus
  188. J. X. Li, J. Liu, C. C. He et al., “Triterpenoids from Cimicifugae rhizoma, a novel class of inhibitors on bone resorption and ovariectomy-induced bone loss,” Maturitas, vol. 58, no. 1, pp. 59–69, 2007. View at Publisher · View at Google Scholar · View at Scopus
  189. S. Hooshmand, S. C. Chai, R. L. Saadat, M. E. Payton, K. Brummel-Smith, and B. H. Arjmandi, “Comparative effects of dried plum and dried apple on bone in postmenopausal women,” British Journal of Nutrition, vol. 106, no. 6, pp. 923–930, 2011.
  190. B. H. Arjmandi, C. D. Johnson, S. C. Campbell, S. Hooshmand, S. C. Chai, and M. P. Akhter, “Combining fructooligosaccharide and dried plum has the greatest effect on restoring bone mineral density among select functional foods and bioactive compounds,” Journal of Medicinal Food, vol. 13, no. 2, pp. 312–319, 2010. View at Scopus
  191. K. H. Lee and E. M. Choi, “Rubus coreanus Miq. extract promotes osteoblast differentiation and inhibits bone-resorbing mediators in MC3T3-E1 cells,” American Journal of Chinese Medicine, vol. 34, no. 4, pp. 643–654, 2006. View at Publisher · View at Google Scholar · View at Scopus
  192. S. H. Do, J. W. Lee, W. I. Jeong et al., “Bone-protecting effect of Rubus coreanus by dual regulation of osteoblasts and osteoclasts,” Menopause, vol. 15, no. 4, pp. 676–683, 2008. View at Publisher · View at Google Scholar · View at Scopus
  193. B. Y. Kim, H. Y. Yoon, S. I. Yun et al., “In vitro and in vivo inhibition of glucocorticoid-induced osteoporosis by the hexane extract of Poncirus trifoliata,” Phytotherapy Research, vol. 25, no. 7, pp. 1000–1010, 2011.
  194. F. Deyhim, K. Mandadi, B. S. Patil, and B. Faraji, “Grapefruit pulp increases antioxidant status and improves bone quality in orchidectomized rats,” Nutrition, vol. 24, no. 10, pp. 1039–1044, 2008. View at Publisher · View at Google Scholar · View at Scopus
  195. F. Deyhim, K. Mandadi, B. Faraji, and B. S. Patil, “Grapefruit juice modulates bone quality in rats,” Journal of Medicinal Food, vol. 11, no. 1, pp. 99–104, 2008. View at Publisher · View at Google Scholar · View at Scopus
  196. K. O. Oh, S. W. Kim, J. Y. Kim et al., “Effect of Rehmannia glutinosa Libosch extracts on bone metabolism,” Clinica Chimica Acta, vol. 334, no. 1-2, pp. 185–195, 2003. View at Publisher · View at Google Scholar · View at Scopus
  197. P. R. Nagareddy and M. Lakshmana, “Withania somnifera improves bone calcification in calcium-deficient ovariectomized rats,” Journal of Pharmacy and Pharmacology, vol. 58, no. 4, pp. 513–519, 2006. View at Publisher · View at Google Scholar · View at Scopus
  198. C. K. Park, H. J. Kim, H. B. Kwak et al., “Inhibitory effects of Stewartia koreana on osteoclast differentiation and bone resorption,” International Immunopharmacology, vol. 7, no. 12, pp. 1507–1516, 2007. View at Publisher · View at Google Scholar · View at Scopus
  199. S. K. Kang, K. S. Kim, Y. S. Byun et al., “Effects of Ulmus davidiana planch on mineralization, bone morphogenetic protein-2, alkaline phosphatase, type I collagen, and collagenase-1 in bone cells,” In Vitro Cellular and Developmental Biology, vol. 42, no. 7, pp. 225–229, 2006. View at Scopus
  200. J. A. Siddiqui, K. Sharan, G. Swarnkar et al., “Quercetin-6-C-β-d-glucopyranoside isolated from Ulmus wallichiana planchon is more potent than quercetin in inhibiting osteoclastogenesis and mitigating ovariectomy-induced bone loss in rats,” Menopause, vol. 18, no. 2, pp. 198–207, 2011. View at Publisher · View at Google Scholar · View at Scopus
  201. K. Sharan, G. Swarnkar, J. A. Siddiqui et al., “A novel flavonoid, 6-C-β-d-glucopyranosyl-(2S,3S)-(+)-3′, 4′,5,7-tetrahydroxyflavanone, isolated from Ulmus wallichiana Planchon mitigates ovariectomy-induced osteoporosis in rats,” Menopause, vol. 17, no. 3, pp. 577–586, 2010. View at Publisher · View at Google Scholar · View at Scopus
  202. G. Swarnkar, K. Sharan, J. A. Siddiqui et al., “A novel flavonoid isolated from the steam-bark of Ulmus wallichiana Planchon stimulates osteoblast function and inhibits osteoclast and adipocyte differentiation,” European Journal of Pharmacology, vol. 658, no. 2-3, pp. 65–73, 2011. View at Publisher · View at Google Scholar · View at Scopus
  203. K. Sharan, J. A. Siddiqui, G. Swarnkar et al., “Extract and fraction from Ulmus wallichiana Planchon promote peak bone achievement and have a nonestrogenic osteoprotective effect,” Menopause, vol. 17, no. 2, pp. 393–402, 2010. View at Publisher · View at Google Scholar · View at Scopus
  204. S. Sehmisch, J. Boeckhoff, J. Wille et al., “Vitex agnus castus as prophylaxis for osteopenia after orchidectomy in rats compared with estradiol and testosterone supplementation,” Phytotherapy Research, vol. 23, no. 6, pp. 851–858, 2009. View at Publisher · View at Google Scholar · View at Scopus
  205. A. Shirwaikar, S. Khan, and S. Malini, “Antiosteoporotic effect of ethanol extract of Cissus quadrangularis Linn. on ovariectomized rat,” Journal of Ethnopharmacology, vol. 89, no. 2-3, pp. 245–250, 2003. View at Publisher · View at Google Scholar · View at Scopus
  206. S. Muthusami, K. Senthilkumar, C. Vignesh et al., “Effects of Cissus quadrangularis on the proliferation, differentiation and matrix mineralization of human osteoblast like SaOS-2 cells,” Journal of Cellular Biochemistry, vol. 112, no. 4, pp. 1035–1045, 2011. View at Publisher · View at Google Scholar · View at Scopus
  207. S. Muthusami, I. Ramachandran, S. Krishnamoorthy, R. Govindan, and S. Narasimhan, “Cissus quadrangularis augments IGF system components in human osteoblast like SaOS-2 cells,” Growth Hormone and IGF Research, vol. 21, no. 6, pp. 343–348, 2011.
  208. J. Weerachayaphorn, A. Chuncharunee, C. Mahagita, B. Lewchalermwongse, A. Suksamrarn, and P. Piyachaturawat, “A protective effect of Curcuma comosa Roxb. on bone loss in estrogen deficient mice,” Journal of Ethnopharmacology, vol. 137, no. 2, pp. 956–962, 2011. View at Publisher · View at Google Scholar · View at Scopus
  209. S. Oh, T. W. Kyung, and H. S. Choi, “Curcumin inhibits osteoclastogenesis by decreasing receptor activator of nuclear factor-κB ligand (RANKL) in bone marrow stromal cells,” Molecules and Cells, vol. 26, no. 5, pp. 486–489, 2008. View at Scopus