About this Journal Submit a Manuscript Table of Contents
Evidence-Based Complementary and Alternative Medicine
Volume 2012 (2012), Article ID 367698, 9 pages
http://dx.doi.org/10.1155/2012/367698
Research Article

Wnt-Signaling-Mediated Antiosteoporotic Activity of Porcine Placenta Hydrolysates in Ovariectomized Rats

1Korea Institute of Oriental Medicine, Daejeon 305811, Republic of Korea
2Department of Food and Nutrition, Institutes of Basic Sciences, Hoseo University, Asan 336795, Republic of Korea

Received 23 August 2012; Accepted 18 November 2012

Academic Editor: Roja Rahimi

Copyright © 2012 Byoung-Seob Ko et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. G. Raisz and G. A. Rodan, “Pathogenesis of osteoporosis,” Endocrinology and Metabolism Clinics of North America, vol. 32, no. 1, pp. 15–24, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. M. C. Laliberté, S. Perreault, G. Jouini, B. J. Shea, and L. Lalonde, “Effectiveness of interventions to improve the detection and treatment of osteoporosis in primary care settings: a systematic review and meta-analysis,” Osteoporosis International, vol. 22, no. 11, pp. 2743–2768, 2011.
  3. J. C. Stevenson, “Justification for the use of HRT in the long-term prevention of osteoporosis,” Maturitas, vol. 51, no. 2, pp. 113–126, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. G. M. Prelevic, T. Kocjan, and A. Markou, “Hormone replacement therapy in postmenopausal women,” Minerva Endocrinologica, vol. 30, no. 1, pp. 27–36, 2005. View at Scopus
  5. J. Banu, E. Varela, and G. Fernandes, “Alternative therapies for the prevention and treatment of osteoporosis,” Nutrition Reviews, vol. 70, no. 1, pp. 22–40, 2012.
  6. H. T. Hong, H. J. Kim, T. K. Lee et al., “Inhibitory effect of a Korean traditional medicine, Honghwain-Jahage (water extracts of Carthamus tinctorius L. seed and Hominis placenta) on interleukin-1-mediated bone resorption,” Journal of Ethnopharmacology, vol. 79, no. 2, pp. 143–148, 2002. View at Publisher · View at Google Scholar · View at Scopus
  7. K. Taku, M. K. Melby, N. Nishi, T. Omori, and M. S. Kurzer, “Soy isoflavones for osteoporosis: an evidence-based approach,” Maturitas, vol. 70, no. 4, pp. 333–338, 2011.
  8. H. J. Chae, K. H. Choi, S. W. Chae et al., “Placenta hominis protects osteoporosis in ovariectomized rats,” Immunopharmacology and Immunotoxicology, vol. 28, no. 1, pp. 165–173, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. R. R. Recker, P. D. Saville, and R. P. Heaney, “Effect of estrogens and calcium carbonate on bone loss in postmenopausal women,” Annals of Internal Medicine, vol. 87, no. 6, pp. 649–655, 1977. View at Scopus
  10. N. A. Mitchner and S. T. Harris, “Current and emerging therapies for osteoporosis,” The Journal of family practice, vol. 58, supplement 7, pp. S45–S49, 2009. View at Scopus
  11. L. H. Hoeppner, F. J. Secreto, and J. J. Westendorf, “Wnt signaling as a therapeutic target for bone diseases,” Expert Opinion on Therapeutic Targets, vol. 13, no. 4, pp. 485–496, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. J. Schlechte, L. Walkner, and M. Kathol, “A longitudinal analysis of premenopausal bone loss in healthy women and women with hyperprolactinemia,” Journal of Clinical Endocrinology and Metabolism, vol. 75, no. 3, pp. 698–703, 1992. View at Publisher · View at Google Scholar · View at Scopus
  13. E. Y. Liao, X. H. Luo, and X. Su, “Comparison of the effects of 17β-E2 and progesterone on the expression of osteoprotegerin in normal human osteoblast-like cells,” Journal of Endocrinological Investigation, vol. 25, no. 9, pp. 785–790, 2002. View at Scopus
  14. M. Cheng, Q. Wang, Y. Fan, et al., “A traditional Chinese herbal preparation, Er-Zhi-Wan, prevent ovariectomy-induced osteoporosis in rats,” Journal of Ethnopharmacology, vol. 138, no. 2, pp. 279–285, 2011.
  15. A. Sekhar Das, M. Mukherjee, and C. Mitra, “Evidence for a prospective anti-osteoporosis effect of black tea (Camellia Sinensis) extract in a bilaterally ovariectomized rat model,” Asia Pacific Journal of Clinical Nutrition, vol. 13, no. 2, pp. 210–216, 2004. View at Scopus
  16. P. Srikanta, S. H. Nagarajappa, G. L. Viswanatha, et al., “Anti-osteoporotic activity of methanolic extract of an Indian herbal formula NR/CAL/06 in ovariectomized rats,” Zhong Xi Yi Jie He Xue Bao, vol. 9, no. 10, pp. 1125–1132, 2011.
  17. W. C. Lin, H. Y. Ho, and J. B. Wu, “Flemingia macrophylla extract ameliorates experimental osteoporosis in ovariectomized rats,” Evidence-based Complementary and Alternative Medicine, vol. 2011, Article ID 752302, 9 pages, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. U. H. Jin, D. I. Kim, T. K. Lee et al., “Herbal formulation, Yukmi-jihang-tang-Jahage, regulates bone resorption by inhibition of phosphorylation mediated by tyrosine kinase Src and cyclooxygenase expression,” Journal of Ethnopharmacology, vol. 106, no. 3, pp. 333–343, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. G. Ackermann, “Does a low-molecular extract of human placenta support ossification?” Archives of Orthopaedic and Traumatic Surgery, vol. 97, no. 4, pp. 281–283, 1980. View at Scopus
  20. H. T. Hong, H. J. Kim, T. K. Lee et al., “Inhibitory effect of a Korean traditional medicine, Honghwain-Jahage (water extracts of Carthamus tinctorius L. seed and Hominis placenta) on interleukin-1-mediated bone resorption,” Journal of Ethnopharmacology, vol. 79, no. 2, pp. 143–148, 2002. View at Publisher · View at Google Scholar · View at Scopus
  21. J. Aitken, D. M. Hart, and R. Lindsay, “Oestrogen replacement therapy for prevention of osteoporosis after oophorectomy,” British Medical Journal, vol. 3, no. 5879, pp. 515–518, 1973. View at Scopus
  22. G. L. Anderson, M. Limacher, A. R. Assaf, et al., “Effects of conjugated equine estrogen in postmenopausal women with hysterectomy: the women's health initiative randomized controlled trial,” Journal of the American Medical Association, vol. 291, no. 14, pp. 1701–1712, 2004.
  23. P. G. Reeves, “Components of the AIN-93 diets as improvements in the AIN-76A diet,” Journal of Nutrition, vol. 127, supplement 5, pp. 838S–841S, 1997.
  24. T. D. Rachner, S. Khosla, and L. C. Hofbauer, “Osteoporosis: now and the future,” The Lancet, vol. 377, no. 9773, pp. 1276–1287, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. R. D. Bukoski and D. Kremer, “Calcium-regulating hormones in hypertension: vascular actions,” American Journal of Clinical Nutrition, vol. 54, supplement 1, pp. 220S–226S, 1991.
  26. L. A. Austin and H. Heath 3rd, “Calcitonin: physiology and pathophysiology,” The New England Journal of Medicine, vol. 304, no. 5, pp. 269–278, 1981. View at Scopus
  27. E. Eren and N. Yilmaz, “Biochemical markers of bone turnover and bone mineral density in patients with β-thalassaemia major,” International Journal of Clinical Practice, vol. 59, no. 1, pp. 46–51, 2005. View at Publisher · View at Google Scholar · View at Scopus
  28. E. Biver, F. Chopin, G. Coiffier, et al., “Bone turnover markers for osteoporotic status assessment? A systematic review of their diagnosis value at baseline in osteoporosis,” Joint Bone Spine, vol. 79, no. 1, pp. 20–25, 2012.
  29. S. M. Weisman and V. Matkovic, “Potential use of biochemical markers of bone turnoverfor assessing the effect of calcium supplementation and predicting fracture risk,” Clinical Therapeutics, vol. 27, no. 3, pp. 299–308, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. R. Rizzoli and J. P. Bonjour, “Hormones and bones,” The Lancet, vol. 49, supplement 1, pp. s20–s23, 1997.
  31. B. L. Riggs, S. Khosla, and L. J. Melton, “A unitary model for involutional osteoporosis: estrogen deficiency causes both type I and type II osteoporosis in postmenopausal women and contributes to bone loss in aging men,” Journal of Bone and Mineral Research, vol. 13, no. 5, pp. 763–773, 1998. View at Publisher · View at Google Scholar · View at Scopus
  32. E. Seeman, G. I. Szmukler, C. Formica, C. Tsalamandris, and R. Mestrovic, “Osteoporosis in anorexia nervosa: the influence of peak bone density, bone loss, oral contraceptive use, and exercise,” Journal of Bone and Mineral Research, vol. 7, no. 12, pp. 1467–1474, 1992. View at Scopus
  33. K. Takuma, H. Mizoguchi, Y. Funatsu, et al., “Placental extract improves hippocampal neuronal loss and fear memory impairment resulting from chronic restraint stress in ovariectomized mice,” Journal of Pharmacological Sciences, vol. 120, pp. 89–97, 2012.
  34. C. G. Son, S. H. Han, J. H. Cho et al., “Induction of hemopoiesis by Saenghyuldab, a mixture of Ginseng Radix, Paeoniae Radix Alba, and Hominis Placenta extracts,” Acta Pharmacologica Sinica, vol. 24, no. 2, pp. 120–126, 2003. View at Scopus
  35. S. C. Manolagas, “Birth and death of bone cells: basic regulatory mechanisms and implications for the pathogenesis and treatment of osteoporosis,” Endocrine Reviews, vol. 21, no. 2, pp. 115–137, 2000. View at Publisher · View at Google Scholar · View at Scopus
  36. S. Theoleyre, Y. Wittrant, S. K. Tat, Y. Fortun, F. Redini, and D. Heymann, “The molecular triad OPG/RANK/RANKL: involvement in the orchestration of pathophysiological bone remodeling,” Cytokine and Growth Factor Reviews, vol. 15, no. 6, pp. 457–475, 2004. View at Publisher · View at Google Scholar · View at Scopus
  37. T. Gaur, C. J. Lengner, H. Hovhannisyan et al., “Canonical WNT signaling promotes osteogenesis by directly stimulating Runx2 gene expression,” The Journal of Biological Chemistry, vol. 280, no. 39, pp. 33132–33140, 2005. View at Publisher · View at Google Scholar · View at Scopus
  38. D. G. Monroe, M. E. McGee-Lawrence, M. J. Oursler, and J. J. Westendorf, “Update on Wnt signaling in bone cell biology and bone disease,” Gene, vol. 492, no. 1, pp. 1–18, 2012.
  39. P. V. N. Bodine and B. S. Komm, “Wnt signaling and osteoblastogenesis,” Reviews in Endocrine and Metabolic Disorders, vol. 7, no. 1-2, pp. 33–39, 2006. View at Publisher · View at Google Scholar · View at Scopus
  40. C. Hartmann, “A Wnt canon orchestrating osteoblastogenesis,” Trends in Cell Biology, vol. 16, no. 3, pp. 151–158, 2006. View at Publisher · View at Google Scholar · View at Scopus
  41. V. Krishnan, H. U. Bryant, and O. A. MacDougald, “Regulation of bone mass by Wnt signaling,” Journal of Clinical Investigation, vol. 116, no. 5, pp. 1202–1209, 2006. View at Publisher · View at Google Scholar · View at Scopus
  42. X. He, M. Semenov, K. Tamai, and X. Zeng, “LDL receptor-related proteins 5 and 6 in Wnt/β-catenin signaling: arrows point the way,” Development, vol. 131, no. 8, pp. 1663–1677, 2004. View at Publisher · View at Google Scholar · View at Scopus
  43. B. A. Watkins and M. F. Seifert, “Food lipids and bone health,” in Food Lipids and Bone Health, R. E. McDonald and B. D. Min, Eds., pp. 71–116, Marcel Dekker, New York, NY, USA, 1997.
  44. K. Sahin, M. Onderci, N. Sahin et al., “Dietary arginine silicate inositol complex improves bone mineralization in quail,” Poultry Science, vol. 85, no. 3, pp. 486–492, 2006. View at Scopus
  45. R. Civitelli, D. T. Villareal, D. Agnusdei, P. Nardi, L. V. Avioli, and C. Gennari, “Dietary L-lysine and calcium metabolism in humans,” Nutrition, vol. 8, no. 6, pp. 400–405, 1992. View at Scopus
  46. T. Chevalley, R. Rizzoli, D. Manen, J. Caverzasio, and J. P. Bonjour, “Arginine increases insulin-like growth factor-I production and collagen synthesis in osteoblast-like cells,” Bone, vol. 23, no. 2, pp. 103–109, 1998. View at Publisher · View at Google Scholar · View at Scopus
  47. C. E. Fiore, P. Pennisi, V. M. Cutuli, A. Prato, R. Messina, and G. Clementi, “L-arginine prevents bone loss and bone collagen breakdown in cyclosporin A-treated rats,” European Journal of Pharmacology, vol. 408, no. 3, pp. 323–326, 2000. View at Publisher · View at Google Scholar · View at Scopus