About this Journal Submit a Manuscript Table of Contents
Evidence-Based Complementary and Alternative Medicine
Volume 2012 (2012), Article ID 381904, 8 pages
Research Article

Effects of Sangu Decoction on Osteoclast Activity in a Rat Model of Breast Cancer Bone Metastasis

1Department of Oncology of Integrative Chinese and Western Medicine, China-Japan Friendship Hospital, Beijing 100029, China
2School of Clinical Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
3TCM Department, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China

Received 30 July 2012; Revised 23 September 2012; Accepted 24 September 2012

Academic Editor: Elisabet Stener-Victorin

Copyright © 2012 Bo Deng et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Bone metastasis (BM) is a major clinical problem for which current treatments lack full efficacy. The Traditional Chinese Medicine (TCM) Sangu Decoction (SGD) has been widely used to treat BM in China. However, no in vivo experiments to date have investigated the effects of TCM on osteoclast activity in BM. In this study, the protective effect and probable mechanism of SGD were evaluated. The model was established using the breast cancer MRMT-1 cells injected into the tibia of rat. SGD was administrated, compared with Zoledronic acid as a positive control. The development of the bone tumor and osteoclast activity was monitored by radiological analysis. TRAP stain was used to identify osteoclasts quantity and activity. TRAP-5b in serum or bone tumor and TRAP mRNA were also quantified. Radiological examination showed that SGD inhibited tumor proliferation and preserved the cortical and trabecular bone structure. In addition, a dramatic reduction of TRAP positive osteoclasts was observed and TRAP-5b levels in serum and bone tumor decreased significantly. It also reduced the mRNA expression of TRAP. The results indicated that SGD exerted potent antiosteoclast property that could be directly related to its TRAP inhibited activity. In addition it prevented bone tumor proliferation in BM model.