About this Journal Submit a Manuscript Table of Contents
Evidence-Based Complementary and Alternative Medicine
Volume 2012 (2012), Article ID 409047, 10 pages
http://dx.doi.org/10.1155/2012/409047
Research Article

Green Tea Attenuates Oxidative Stress and Downregulates the Expression of Angiotensin II AT1 Receptor in Renal and Hepatic Tissues of Streptozotocin-Induced Diabetic Rats

Department of Biological Sciences, Faculty of Science, Kuwait University, P.O. Box 5969, Safat 13060, Kuwait

Received 13 August 2012; Accepted 13 October 2012

Academic Editor: Khalid Rahman

Copyright © 2012 Martha Thomson et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. H. Weisburger, “Tea and health: a historical perspective,” Cancer Letters, vol. 114, no. 1-2, pp. 315–317, 1997. View at Publisher · View at Google Scholar · View at Scopus
  2. N. Chen, R. Bezzina, E. Hinch et al., “Green tea, black tea, and epigallocatechin modify body composition, improve glucose tolerance, and differentially alter metabolic gene expression in rats fed a high-fat diet,” Nutrition Research, vol. 29, no. 11, pp. 784–793, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. J. M. Hodgson and K. D. Croft, “Tea flavonoids and cardiovascular health,” Molecular Aspects of Medicine, vol. 31, no. 6, pp. 495–502, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. Y. Clement, “Can green tea do that? A literature review of the clinical evidence,” Preventive Medicine, vol. 49, no. 2-3, pp. 83–87, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. S. M. Chacko, P. T. Thambi, R. Kuttan, and I. Nishigaki, “Beneficial effects of green tea: a literature review,” Chinese Medicine, vol. 5, article 13, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. Q. Guo, B. Zhao, M. Li, S. Shen, and X. Wenjuan, “Studies on protective mechanisms of four components of green tea polyphenols against lipid peroxidation in synaptosomes,” Biochimica et Biophysica Acta, vol. 1304, no. 3, pp. 210–222, 1996. View at Publisher · View at Google Scholar · View at Scopus
  7. H. Tsuneki, M. Ishizuka, M. Terasawa, J. B. Wu, T. Sasaoka, and I. Kimura, “Effect of green tea on blood glucose levels and serum proteomic patterns in diabetic (db/db) mice and on glucose metabolism in healthy humans,” BMC Pharmacology, vol. 4, article 18, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. H. Iso, C. Date, K. Wakai et al., “The relationship between green tea and total caffeine intake and risk for self-reported type 2 diabetes among Japanese adults,” Annals of Internal Medicine, vol. 144, no. 8, pp. 554–562, 2006. View at Scopus
  9. S. Wolfram, D. Raederstorff, M. Preller et al., “Epigallocatechin gallate supplementation alleviates diabetes in rodents,” Journal of Nutrition, vol. 136, no. 10, pp. 2512–2518, 2006. View at Scopus
  10. International Diabetes Federation, IDF Diabetes Atlas, International Diabetes Federation, Brussels, Belgium, 5th edition, 2011, http://www.idf.org/diabetesatlas.
  11. D. Aronson, “Hyperglycemia and the pathobiology of diabetic complications,,” in Cardiovascular Diabetology: Clinical, Metabolic and Inflammatory Facets, E. Z. Fisman and A. Tenenbaum, Eds., Advances in Cardiology, Basel, Switzerland, 2008.
  12. American Diabetes Association, “Diagnosis and classification of diabetes mellitus,” Journal of Diabetes Care, vol. 33, supplement 1, pp. S62–S69, 2010.
  13. S. Tesfaye and G. Gill, “Chronic diabetic complications in Africa,” African Journal of Diabetes Medicine, vol. 9, pp. 4–8, 2011.
  14. Y. Xu, Z. He, and G. L. King, “Introduction of hyperglycemia and dyslipidemia in the pathogenesis of diabetic vascular complications,” Current Diabetes Reports, vol. 5, no. 2, pp. 91–97, 2005. View at Scopus
  15. A. P. Chintan, L. P. Nimish, B. Nayana, M. Bhavna, G. Mahendra, and T. Hardik, “Cardiovascular complication of diabetes mellitus,” Journal of Applied Pharmaceutical Science, vol. 4, pp. 1–6, 2011.
  16. A. C. Maritim, R. A. Sanders, and J. B. Watkins, “Diabetes, oxidative stress, and antioxidants: a review,” Journal of Biochemical and Molecular Toxicology, vol. 17, no. 1, pp. 24–38, 2003. View at Publisher · View at Google Scholar · View at Scopus
  17. R. Ahmed, “The physiological and biochemical effects of diabetes on the balance between oxidative stress and antioxidant defense system,” Medical Journal of Islamic World Academy of Sciences, vol. 15, pp. 31–42, 2005.
  18. P. Goycheva, V. Gadjeva, and B. Popov, “Oxidative stress and its complications in diabetes mellitus,” Trakia Journal of Sciences, vol. 4, pp. 1–8, 2006.
  19. V. Selvaraju, M. Joshi, S. Suresh, J. A. Sanchez, N. Maulik, and G. Maulik, “Diabetes, oxidative stress, molecular mechanism and cardiovascular disease—an overview,” Toxicology Mechanisms and Methods, vol. 22, no. 5, pp. 330–335, 2012. View at Publisher · View at Google Scholar
  20. F. Locatelli, B. Canaud, K. U. Eckardt, P. Stenvinkel, C. Wanner, and C. Zoccali, “Oxidative stress in end-stage renal disease: an emerging treat to patient outcome,” Nephrology Dialysis Transplantation, vol. 18, no. 7, pp. 1272–1280, 2003. View at Scopus
  21. E. C. Samouilidou, E. J. Grapsa, I. Kakavas, A. Lagouranis, and B. Agrogiannis, “Oxidative stress markers and C-reactive protein in end-stage renal failure patients on dialysis,” International Urology and Nephrology, vol. 35, no. 3, pp. 393–397, 2003. View at Publisher · View at Google Scholar · View at Scopus
  22. E. Ritz, “Diabetic nephropathy,” Saudi Journal of Kidney Diseases and Transplantation, vol. 17, no. 4, pp. 481–490, 2006. View at Scopus
  23. S. C. W. Tang, “Diabetic nephropathy: a global and growing threat,” Hong Kong Medical Journal, vol. 16, no. 4, pp. 244–245, 2010. View at Scopus
  24. K. D. Burns, “Angiotensin II and its receptors in the diabetic kidney,” American Journal of Kidney Diseases, vol. 36, no. 3, pp. 449–467, 2000. View at Scopus
  25. C. Xue and H. M. Siragy, “Local renal aldosterone system and its regulation by salt, diabetes, and angiotensin II type 1 receptor,” Hypertension, vol. 46, no. 3, pp. 584–590, 2005. View at Publisher · View at Google Scholar · View at Scopus
  26. R. Bataller, P. Sancho-Bru, P. Ginès, and D. A. Brenner, “Liver fibrogenesis: a new role for the renin-angiotensin system,” Antioxidants and Redox Signaling, vol. 7, no. 9-10, pp. 1346–1355, 2005. View at Publisher · View at Google Scholar · View at Scopus
  27. H. M. Siragy, “AT1 and AT2 receptor in the kidney: role in health and disease,” Seminars in Nephrology, vol. 24, no. 2, pp. 93–100, 2004. View at Publisher · View at Google Scholar · View at Scopus
  28. L. Gnudi and D. Goldsmith, “Renin angiotensin aldosterone system (RAAS) inhibitors in the prevention of early renal disease in diabetes,” F1000 Medicine Reports, vol. 2, no. 1, article 18, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. National Research Counci, lInstitute for Laboratory Animal Research, and Commission on Life Sciences, Guide for the Care and Use of Animals, The National Academies Press, Washington, DC, USA, 1996.
  30. H. Drobiova, M. Thomson, K. Al-Qattan, R. Peltonen-Shalaby, Z. Al-Amin, and M. Ali, “Garlic increases antioxidant levels in diabetic and hypertensive rats determined by a modified peroxidase method,” Evidence-based Complementary and Alternative Medicine, vol. 2011, Article ID 703049, 8 pages, 2011. View at Publisher · View at Google Scholar · View at Scopus
  31. T. J. Murphy, R. W. Alexander, K. K. Griendling, M. S. Runge, and K. E. Bernstein, “Isolation of a cDNA encoding the vascular type-1 angiotensin II receptor,” Nature, vol. 351, no. 6323, pp. 233–236, 1991. View at Publisher · View at Google Scholar · View at Scopus
  32. K. K. Al-Qattan, S. J. Al-Akhawand, and M. H. Mansour, “Immunohistochemical localization of distinct angiotensin II AT1 receptor isoforms in the kidneys of the Sprague-Dawley rat and the desert rodent Meriones Crassus,” Journal of Veterinary Medicine Series C, vol. 35, no. 2, pp. 130–138, 2006. View at Publisher · View at Google Scholar · View at Scopus
  33. M. M. Bradford, “A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding,” Analytical Biochemistry, vol. 72, no. 1-2, pp. 248–254, 1976. View at Scopus
  34. H. Ohkawa, N. Ohishi, and K. Yagi, “Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction,” Analytical Biochemistry, vol. 95, no. 2, pp. 351–358, 1979. View at Scopus
  35. H. Abei, Catalase in the Method of Enzymatic Analysis, vol. 2, Academic Press, New York, NY, USA, 1974.
  36. Z. M. Al-Amin, M. Thomson, K. K. Al-Qattan, and M. Ali, “Anti-diabetic and hypolipidaemic properties of ginger (Zingiber officinale) in streptozotocin-induced diabetic rats,” British Journal of Nutrition, vol. 96, no. 4, pp. 660–666, 2006. View at Publisher · View at Google Scholar · View at Scopus
  37. M. Thomson, Z. M. Al-Amin, K. K. Al-Qattan, L. H. Shaban, and M. Ali, “Anti-diabetic and hypolipidaemic properties of garlic (Allium sativum) in streptozotocin-induced diabetic rats,” International Journal of Diabetes and Metabolism, vol. 15, no. 3, pp. 108–115, 2007. View at Scopus
  38. P. V. Anandh Babu, K. E. Sabitha, and C. S. Shyamaladevi, “Green tea extract impedes dyslipidaemia and development of cardiac dysfunction in streptozotocin-diabetic rats,” Clinical and Experimental Pharmacology and Physiology, vol. 33, no. 12, pp. 1184–1189, 2006. View at Publisher · View at Google Scholar · View at Scopus
  39. R. A. Anderson and M. M. Polansky, “Tea enhances insulin activity,” Journal of Agricultural and Food Chemistry, vol. 50, no. 24, pp. 7182–7186, 2002. View at Publisher · View at Google Scholar · View at Scopus
  40. L. Y. Wu, C. C. Juan, L. T. Ho, Y. P. Hsu, and L. S. Hwang, “Effect of green tea supplementation on insulin sensitivity in sprague-dawley rats,” Journal of Agricultural and Food Chemistry, vol. 52, no. 3, pp. 643–648, 2004. View at Scopus
  41. H. Ortsater, N. Grankvist, S. Wolfram, N. Kuehn, and A. Sjoholm, “Diet supplementation with green tea extract epigallocatechin gallate prevents progression to glucose intolerance in db/db mice,” Nutrition and Metabolism, vol. 9, pp. 11–17, 2012.
  42. L. Y. Wu, C. C. Juan, L. S. Hwang, Y. P. Hsu, P. H. Ho, and L. T. Ho, “Green tea supplementation ameliorates insulin resistance and increases glucose transporter IV content in a fructose-fed rat model,” European Journal of Nutrition, vol. 43, no. 2, pp. 116–124, 2004. View at Publisher · View at Google Scholar · View at Scopus
  43. Y. Kobayashi, M. Suzuki, H. Satsu et al., “Green tea polyphenols inhibit the sodium-dependent glucose transporter of intestinal epithelial cells by a competitive mechanism,” Journal of Agricultural and Food Chemistry, vol. 48, no. 11, pp. 5618–5623, 2000. View at Publisher · View at Google Scholar · View at Scopus
  44. K. Yasui, H. Tanabe, N. Okada, R. Fukutomi, Y. Ishigami, and M. Isemura, “Effects of catechin-rich green tea on gene expression of gluconeogenic enzymes in rat hepatoma H4IIE cells,” Biomedical Research, vol. 31, no. 3, pp. 183–189, 2010. View at Publisher · View at Google Scholar · View at Scopus
  45. T. Yokozawa, T. Nakagawa, and K. Kitani, “Antioxidative activity of green tea polyphenol in cholesterol-fed rats,” Journal of Agricultural and Food Chemistry, vol. 50, no. 12, pp. 3549–3552, 2002. View at Publisher · View at Google Scholar · View at Scopus
  46. O. O. Ojo, O. Ladeji, and M. S. Nadro, “Studies of the antioxidative effects of green and black tea (Camellia sinensis) extracts in rats,” Journal of Medicinal Food, vol. 10, no. 2, pp. 345–349, 2007. View at Publisher · View at Google Scholar · View at Scopus
  47. I. Hininger-Favier, R. Benaraba, S. Coves, R. A. Anderson, and A. M. Roussel, “Green tea extract decreases oxidative stress and improves insulin sensitivity in an animal model of insulin resistance, the fructose-fed rat,” Journal of the American College of Nutrition, vol. 28, no. 4, pp. 355–361, 2009. View at Scopus
  48. M. Roghani and T. Baluchnejadmojarad, “Hypoglycemic and hypolipidemic effect and antioxidant activity of chronic epigallocatechin-gallate in streptozotocin-diabetic rats,” Pathophysiology, vol. 17, no. 1, pp. 55–59, 2010. View at Publisher · View at Google Scholar · View at Scopus
  49. T. Yokozawa, T. Nakagawa, T. Oya, T. Okubo, and L. R. Juneja, “Green tea polyphenols and dietary fibre protect against kidney damage in rats with diabetic nephropathy,” Journal of Pharmacy and Pharmacology, vol. 57, no. 6, pp. 773–780, 2005. View at Publisher · View at Google Scholar · View at Scopus
  50. M. H. Mansour, K. Al-Qattan, M. Thomson, and M. Ali, “Garlic (Allium sativum) down-regulates the expression of angiotensin II AT1 receptor in adrenal and renal tissues of streptozotocin-induced diabetic rats,” Inflammopharmacology. In press. View at Publisher · View at Google Scholar
  51. J. Zhuo, C. Maric, P. J. Harris, D. Alcorn, and F. A. O. Mendelsohn, “Localization and functional properties of angiotensin II AT1 receptors in the kidney: focus on renomedullary interstitial cells,” Hypertension Research, vol. 20, no. 4, pp. 233–250, 1997. View at Scopus
  52. A. A. Banday and M. F. Lokhandwala, “Oxidative stress-induced renal angiotensin AT1 receptor upregulation causes increased stimulation of sodium transporters and hypertension,” American Journal of Physiology, vol. 295, no. 3, pp. F698–F706, 2008. View at Publisher · View at Google Scholar · View at Scopus
  53. K. Sharma, Y. Jin, J. Guo, and F. N. Ziyadeh, “Neutralization of TGF-β by anti-TGF-β antibody attenuates kidney hypertrophy and the enhanced extracellular matrix gene expression in STZ-induced diabetic mice,” Diabetes, vol. 45, no. 4, pp. 522–530, 1996. View at Scopus
  54. A. Elosta, T. Ghous, and N. Ahmed, “Natural products as anti-glycation agents: possible therapeutic potential for diabetic complications,” Current Diabetes Reviews, vol. 8, no. 2, pp. 92–108, 2012.
  55. J. E. Toblli, M. C. Mũoz, G. Cao, J. Mella, L. Pereyra, and R. Mastai, “ACE inhibition and AT1 receptor blockade prevent fatty liver and fibrosis in obese zucker rats,” Obesity, vol. 16, no. 4, pp. 770–776, 2008. View at Publisher · View at Google Scholar · View at Scopus