About this Journal Submit a Manuscript Table of Contents
Evidence-Based Complementary and Alternative Medicine
Volume 2012 (2012), Article ID 428560, 10 pages
http://dx.doi.org/10.1155/2012/428560
Research Article

Herb-Drug Interaction of Paullinia cupana (Guarana) Seed Extract on the Pharmacokinetics of Amiodarone in Rats

1Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
2Centre for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-517 Coimbra, Portugal
3Health Sciences Research Centre (CICS), University of Beira Interior (UBI), 6200-506 Covilhã, Portugal
4Department of Internal Medicine, Amato Lusitano Hospital, 6000-085 Castelo Branco, Portugal

Received 14 September 2012; Accepted 10 November 2012

Academic Editor: Ken Yasukawa

Copyright © 2012 Márcio Rodrigues et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. W. P. Lima, L. C. Carnevali Jr., R. Eder, L. F. B. P. Costa Rosa, E. M. Bacchi, and M. C. L. Seelaender, “Lipid metabolism in trained rats: effect of guarana (Paullinia cupana Mart.) supplementation,” Clinical Nutrition, vol. 24, no. 6, pp. 1019–1028, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. M. P. de Oliveira Campos, R. Riechelmann, L. C. Martins, B. J. Hassan, F. B. A. Casa, and A. D. Giglio, “Guarana (Paullinia cupana) improves fatigue in breast cancer patients undergoing systemic chemotherapy,” The Journal of Alternative and Complementary Medicine, vol. 17, no. 6, pp. 505–512, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. C. M. Heard, S. Johnson, G. Moss, and C. P. Thomas, “In vitro transdermal delivery of caffeine, theobromine, theophylline and catechin from extract of Guarana, Paullinia cupana,” International Journal of Pharmaceutics, vol. 317, no. 1, pp. 26–31, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. C. Costa Krewer, E. E. Ribeiro, E. A. Ribeiro, et al., “Habitual intake of guaraná and metabolic morbidities: an epidemiological study of an elderly Amazonian population,” Phytotherapy Research, vol. 25, pp. 1367–1374, 2011.
  5. T. Klein, R. Longhini, and J. C. de Mello, “Development of an analytical method using reversed-phase HPLC-PDA for a semipurified extract of Paullinia cupana var. sorbilis (guaraná),” Talanta, vol. 88, pp. 502–506, 2012.
  6. E. Bulku, D. Zinkovsky, P. Patel et al., “A novel dietary supplement containing multiple phytochemicals and vitamins elevates hepatorenal and cardiac antioxidant enzymes in the absence of significant serum chemistry and genomic changes,” Oxidative Medicine and Cellular Longevity, vol. 3, no. 2, pp. 129–144, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. C. N. Boozer, J. A. Nasser, S. B. Heymsfield, V. Wang, G. Chen, and J. L. Solomon, “An herbal supplement containing Ma Huang-Guarana for weight loss: a randomized, double-blind trial,” International Journal of Obesity, vol. 25, no. 3, pp. 316–324, 2001. View at Publisher · View at Google Scholar · View at Scopus
  8. T. Opala, P. Rzymski, I. Pischel, M. Wilczak, and J. Woźniak, “Efficacy of 12 weeks supplementation of a botanical extract-based weight loss formula on body weight, body composition and blood chemistry in healthy, overweight subjects—a randomised double-blind placebo-controlled clinical trial,” European Journal of Medical Research, vol. 11, no. 8, pp. 343–350, 2006. View at Scopus
  9. S. Bérubé-Parent, C. Pelletier, J. Doré, and A. Tremblay, “Effects of encapsulated green tea and Guarana extracts containing a mixture of epigallocatechin-3-gallate and caffeine on 24 h energy expenditure and fat oxidation in men,” British Journal of Nutrition, vol. 94, no. 3, pp. 432–436, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. S. P. Bydlowski, R. L. Yunker, and M. T. R. Subbiah, “A novel property of an aqueous guarana extract (Paullinia cupana): inhibition of platelet aggregation in vitro and in vivo,” Brazilian Journal of Medical and Biological Research, vol. 21, no. 3, pp. 535–538, 1988. View at Scopus
  11. S. P. Bydlowski, E. A. D'Amico, and D. A. F. Chamone, “An aqueous extract of guarana (Paullinia cupana) decreases platelet thromboxane synthesis,” Brazilian Journal of Medical and Biological Research, vol. 24, no. 4, pp. 421–424, 1991. View at Scopus
  12. T. M. Antonelli-Ushirobira, E. N. Kaneshima, M. Gabriel, E. A. Audi, L. C. Marques, and J. C. P. Mello, “Acute and subchronic toxicological evaluation of the semipurified extract of seeds of guaraná (Paullinia cupana) in rodents,” Food and Chemical Toxicology, vol. 48, no. 7, pp. 1817–1820, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. European Medicines Agency, “Call for scientific data for use in HMPC assessment work on Paullinia cupana Kunth, semen,” EMA/HMPC/278492/2011, Committee on Herbal Medicinal Products (HMPC), 2011, http://www.ema.europa.eu/docs/en_GB/document_library/Herbal_-_Call_for_data/2011/04/WC500105239.pdf.
  14. M. H. Pittler, K. Schmidt, and E. Ernst, “Adverse events of herbal food supplements for body weight reduction: systematic review,” Obesity Reviews, vol. 6, no. 2, pp. 93–111, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. R. Scaglione, C. Argano, T. Di Chiara, and G. Licata, “Obesity and cardiovascular risk: the new public health problem of worldwide proportions,” Expert Review of Cardiovascular Therapy, vol. 2, no. 2, pp. 203–212, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. P. F. Bodary, H. B. Iglay, and D. T. Eitzman, “Strategies to reduce vascular risk associated with obesity,” Current Vascular Pharmacology, vol. 5, no. 4, pp. 249–258, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. K. C. Zalesin, B. A. Franklin, W. M. Miller, E. D. Peterson, and P. A. McCullough, “Impact of obesity on cardiovascular disease,” Endocrinology and Metabolism Clinics of North America, vol. 37, no. 3, pp. 663–684, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. B. N. Singh, “Amiodarone as paradigm for developing new drugs for atrial fibrillation,” Journal of Cardiovascular Pharmacology, vol. 52, no. 4, pp. 300–305, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. S. A. Papiris, C. Triantafillidou, L. Kolilekas, D. Markoulaki, and E. D. Manali, “Amiodarone: review of pulmonary effects and toxicity,” Drug Safety, vol. 33, no. 7, pp. 539–558, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. A. Shayeganpour, D. A. Hamdy, and D. R. Brocks, “Pharmacokinetics of desethylamiodarone in the rat after its administration as the preformed metabolite, and after administration of amiodarone,” Biopharmaceutics & Drug Disposition, vol. 29, no. 3, pp. 159–166, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. H. Van Herendael and P. Dorian, “Amiodarone for the treatment and prevention of ventricular fibrillation and ventricular tachycardia,” Vascular Health and Risk Management, vol. 6, pp. 465–472, 2010. View at Scopus
  22. T. Pérez-Ruiz, C. Martínez-Lozano, A. Sanz, and E. Bravo, “Development and validation of a capillary electrophoretic method for the determination of amiodarone and desethylamiodarone,” Chromatographia, vol. 56, no. 1-2, pp. 63–67, 2002. View at Scopus
  23. S. B. Edwin, D. L. Jennings, and J. S. Kalus, “An evaluation of the early pharmacodynamic response after simultaneous initiation of warfarin and amiodarone,” The Journal of Clinical Pharmacology, vol. 50, no. 6, pp. 693–698, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. S. Karimi, A. Hough, C. Beckey, and D. Parra, “Results of a safety initiative for patients on concomitant amiodarone and simvastatin therapy in a Veterans Affairs Medical Center,” Journal of Managed Care Pharmacy, vol. 16, no. 7, pp. 472–481, 2010. View at Scopus
  25. E. E. Roughead, L. M. Kalisch, J. D. Barratt, and A. L. Gilbert, “Prevalence of potentially hazardous drug interactions amongst Australian veterans,” British Journal of Clinical Pharmacology, vol. 70, no. 2, pp. 252–257, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. “Directive 2010/63/EU of the European Parliament and of the Council of 22 September 2010 on the protection of animals used for scientific purposes,” Official Journal of the European Union, vol. 276, no. 33, pp. 33–79, 2010.
  27. US DHHS, FDA, CDER, “Guidance for Industry—Estimating the maximum safe starting dose in initial clinical trials for therapeutics in adult healthy volunteers,” US Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research, 2005, http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm078932.pdf.
  28. A. Shayeganpour, A. S. Jun, and D. R. Brocks, “Pharmacokinetics of amiodarone in hyperlipidemic and simulated high fat-meal rat models,” Biopharmaceutics & Drug Disposition, vol. 26, no. 6, pp. 249–257, 2005. View at Publisher · View at Google Scholar · View at Scopus
  29. M. Rodrigues, G. Alves, A. Ferreira, J. Queiroz, and A. Falcão, “A rapid HPLC method for the simultaneous determination of amiodarone and its major metabolite in rat plasma and tissues: a useful tool for pharmacokinetic studies,” Journal of Chromatographic Science. In press. View at Publisher · View at Google Scholar
  30. C. C. Libersa, S. A. Brique, K. B. Motte et al., “Dramatic inhibition of amiodarone metabolism induced by grapefruit juice,” British Journal of Clinical Pharmacology, vol. 49, no. 4, pp. 373–378, 2000. View at Publisher · View at Google Scholar · View at Scopus
  31. J. Zhi, R. Moore, L. Kanitra, and T. E. Mulligan, “Effects of orlistat, a lipase inhibitor, on the pharmacokinetics of three highly lipophilic drugs (amiodarone, fluoxetine, and simvastatin) in healthy volunteers,” The Journal of Clinical Pharmacology, vol. 43, no. 4, pp. 428–435, 2003. View at Publisher · View at Google Scholar · View at Scopus
  32. M. E. Elsherbiny, A. O. S. El-Kadi, and D. R. Brocks, “The effect of β-naphthoflavone on the metabolism of amiodarone by hepatic and extra-hepatic microsomes,” Toxicology Letters, vol. 195, no. 2-3, pp. 147–154, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. X. Meng, P. Mojaverian, M. Doedée et al., “Bioavailability of amiodarone tablets administered with and without food in healthy subjects,” The American Journal of Cardiology, vol. 87, no. 4, pp. 432–435, 2001. View at Publisher · View at Google Scholar · View at Scopus
  34. E. A. Carlini, “Plants and the central nervous system,” Pharmacology Biochemistry and Behavior, vol. 75, no. 3, pp. 501–512, 2003. View at Publisher · View at Google Scholar · View at Scopus