About this Journal Submit a Manuscript Table of Contents
Evidence-Based Complementary and Alternative Medicine
Volume 2012 (2012), Article ID 431081, 7 pages
http://dx.doi.org/10.1155/2012/431081
Research Article

Antioxidant and Antityrosinase Activity of Flemingia macrophylla and Glycine tomentella Roots

1Department of Food Science & Technology, Chia Nan University of Pharmacy and Science, 60 Erh-Jen Road, Section 1, Jen-Te, Tainan 717, Taiwan
2Department of Applied Cosmetic Science, Ching Kuo Institute of Management and Health, 336 Fu-Hsing Road, Keelung 203, Taiwan
3Department of Pharmacy, Chia Nan University of Pharmacy and Science, 60 Erh-Jen Road, Section 1, Jen-Te, Tainan 717, Taiwan
4Department of Cosmetic Science, Chia Nan University of Pharmacy and Science, 60 Erh-Jen Road, Section 1, Jen-Te, Tainan 717, Taiwan

Received 2 June 2012; Revised 10 August 2012; Accepted 10 August 2012

Academic Editor: Vincenzo De Feo

Copyright © 2012 Bor-Sen Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

The antioxidant and antityrosinase activities of the water extract of Flemingia macrophylla root (WEFM) were investigated. The results showed that WEFM exhibited radical scavenging and reducing activities, as well as ferrous ion chelating property. In addition, WEFM also protected phospholipids against oxidation, indicating that WEFM could protect biomolecules from oxidative damage. Meanwhile, in the range of 50–100 μg/mL, the tyrosinase inhibitory activity of WEFM increased with an increase in sample concentration and was superior to that of the water extract of Glycine tomentella root (WEGT). A high performance liquid chromatography analysis was used to determine the phenolic components, revealing that daidzin, daidzein, genistin, and genistein were present in WEFM and WEGT. Acting as an antioxidant and a tyrosinase inhibitor, these bioactive constituents could contribute to the protective effects of WEFM. Overall, the results showed that WEFM might serve as a natural antioxidant and tyrosinase inhibitor.