About this Journal Submit a Manuscript Table of Contents
Evidence-Based Complementary and Alternative Medicine
Volume 2012 (2012), Article ID 438460, 11 pages
http://dx.doi.org/10.1155/2012/438460
Research Article

NMDA Receptor-Dependent Synaptic Activity in Dorsal Motor Nucleus of Vagus Mediates the Enhancement of Gastric Motility by Stimulating ST36

1Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, 16 Nanxiaojie Street, Dongzhimennei, Beijing 100700, China
2Qingdao Haici Medical Group, 4 Renmin Road, Qingdao 266033, China
3Guanganmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
4The Affiliated Hospital, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
5Department of Pharmacology, Southern Medical University, Guangzhou 510515, China
6Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL 32306, USA

Received 12 July 2012; Revised 4 September 2012; Accepted 8 September 2012

Academic Editor: Ying Xia

Copyright © 2012 Xinyan Gao et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. X. Lin, J. Liang, J. Ren, F. Mu, M. Zhang, and J. D. Chen, “Electrical stimulation of acupuncture points enhances gastric myoelectrical activity in humans,” American Journal of Gastroenterology, vol. 92, no. 9, pp. 1527–1530, 1997. View at Scopus
  2. C. S. Chang, C. W. Ko, C. Y. Wu, and G. H. Chen, “Effect of electrical stimulation on acupuncture points in diabetic patients with gastric dysrhythmia: a pilot study,” Digestion, vol. 64, no. 3, pp. 184–190, 2001. View at Publisher · View at Google Scholar · View at Scopus
  3. H. Ouyang and J. D. Z. Chen, “Review article: therapeutic roles of acupuncture in functional gastrointestinal disorders,” Alimentary Pharmacology and Therapeutics, vol. 20, no. 8, pp. 831–841, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. T. Takahashi, “Acupuncture for functional gastrointestinal disorders,” Journal of Gastroenterology, vol. 41, no. 5, pp. 408–417, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. J. Yin and J. D. Z. Chen, “Gastrointestinal motility disorders and acupuncture,” Autonomic Neuroscience, vol. 157, no. 1-2, pp. 31–37, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. Y. Li, G. Tougas, S. G. Chiverton, and R. H. Hunt, “The effect of acupuncture on gastrointestinal function and disorders,” American Journal of Gastroenterology, vol. 87, no. 10, pp. 1372–1381, 1992. View at Scopus
  7. G. Lux, J. Hagel, P. Bäcker et al., “Acupuncture inhibits vagal gastric acid secretion stimulated by sham feeding in healthy subjects,” Gut, vol. 35, no. 8, pp. 1026–1029, 1994. View at Scopus
  8. H. Ouyang, J. Yin, Z. Wang, P. J. Pasricha, and J. D. Z. Chen, “Electroacupuncture accelerates gastric emptying in association with changes in vagal activity,” American Journal of Physiology, vol. 282, no. 2, pp. G390–G396, 2002. View at Scopus
  9. M. Tatewaki, M. Harris, K. Uemura et al., “Dual effects of acupuncture on gastric motility in conscious rats,” American Journal of Physiology, vol. 285, no. 4, pp. R862–R872, 2003. View at Scopus
  10. J. Chen, G. Q. Song, J. Yin, T. Koothan, and J. D. Z. Chen, “Electroacupuncture improves impaired gastric motility and slow waves induced by rectal distension in dogs,” American Journal of Physiology, vol. 295, no. 3, pp. G614–G620, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. K. N. Browning, W. E. Renehan, and R. A. Travagli, “Electrophysiological and morphological heterogeneity of rat dorsal vagal neurones which project to specific areas of the gastrointestinal tract,” Journal of Physiology, vol. 517, Part 2, pp. 521–532, 1999. View at Publisher · View at Google Scholar · View at Scopus
  12. R. A. Gillis, J. A. Quest, F. D. Pagani, et al., “Control centers in the central nervous system for regulating gastrointestinal motility,” in Comprehensive Physiology, R. Terjung, Ed., pp. 621–683, Wiley Online Library, 2011.
  13. R. A. Travagli, G. E. Hermann, K. N. Browning, and R. C. Rogers, “Brainstem circuits regulating gastric function,” Annual Review of Physiology, vol. 68, pp. 279–305, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. H. Gao and B. N. Smith, “Tonic GABAa receptor-mediated inhibition in the rat dorsal motor nucleus of the vagus,” Journal of Neurophysiology, vol. 103, no. 2, pp. 904–914, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. H. E. Raybould, L. J. Jakobsen, D. Novin, and Y. Tache, “TRH stimulation and L-glutamic acid inhibition of proximal gastric motor activity in the rat dorsal vagal complex,” Brain Research, vol. 495, no. 2, pp. 319–328, 1989. View at Scopus
  16. H. S. Feng, R. B. Lynn, J. Han, and F. P. Brooks, “Gastric effects of TRH analogue and bicuculline injected into dorsal motor vagal nucleus in cats,” American Journal of Physiology, vol. 259, no. 2, pp. G321–G326, 1990. View at Scopus
  17. R. A. Travagli, R. A. Gillis, and S. Vicini, “Effects of thyrotropin-releasing hormone on neurons in rat dorsal motor nucleus of the vagus, in vitro,” American Journal of Physiology, vol. 263, no. 4, pp. G508–G517, 1992. View at Scopus
  18. R. J. Washabau, M. Fudge, W. J. Price, and F. C. Barone, “GABA receptors in the dorsal motor nucleus of the vagus influence feline lower esophageal sphincter and gastric function,” Brain Research Bulletin, vol. 38, no. 6, pp. 587–594, 1995. View at Publisher · View at Google Scholar · View at Scopus
  19. Y. Q. Li, B. Zhu, P. J. Rong, H. Ben, and Y. H. Li, “Neural mechanism of acupuncture-modulated gastric motility,” World Journal of Gastroenterology, vol. 13, no. 5, pp. 709–716, 2007. View at Scopus
  20. X. Y. Gao, S. P. Zhang, B. Zhu, and H. Q. Zhang, “Investigation of specificity of auricular acupuncture points in regulation of autonomic function in anesthetized rats,” Autonomic Neuroscience, vol. 138, no. 1-2, pp. 50–56, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. S. Cheng, Chinese Acupuncture and Moxibustion, Foreign Language Press, Beijing, China, 1996.
  22. K. N. Browning, A. E. Kalyuzhny, and R. A. Travagli, “μ-opioid receptor trafficking on inhibitory synapses in the rat brainstem,” Journal of Neuroscience, vol. 24, no. 33, pp. 7344–7352, 2004. View at Publisher · View at Google Scholar · View at Scopus
  23. Z. K. Krowicki, K. A. Sharkey, S. C. Serron, N. A. Nathan, and P. J. Hornby, “Distribution of nitric oxide synthase in rat dorsal vagal complex and effects of microinjection of nitric oxide compounds upon gastric motor function,” The Journal of Comparative Neurology, vol. 377, pp. 49–69, 1997.
  24. R. C. Rogers, G. E. Hermann, and R. A. Travagli, “Brainstem pathways responsible for oesophageal control of gastric motility and tone in the rat,” Journal of Physiology, vol. 514, no. 2, pp. 369–383, 1999. View at Publisher · View at Google Scholar · View at Scopus
  25. P. J. Hornby, “Receptors and transmission in the brain-gut axis. II. Excitatory amino acid receptors in the brain-gut axis,” American Journal of Physiology, vol. 280, no. 6, pp. G1055–G1060, 2001. View at Scopus
  26. X. Zhang and R. Fogel, “Glutamate mediates an excitatory influence of the paraventricular hypothalamic nucleus on the dorsal motor nucleus of the vagus,” Journal of Neurophysiology, vol. 88, no. 1, pp. 49–63, 2002. View at Scopus
  27. K. N. Browning and R. A. Travagli, “The peptide TPH uncovers the presence of presynaptic 5-HT1A receptors via activation of a second messenger pathway in the rat dorsal vagal complex,” Journal of Physiology, vol. 531, no. 2, pp. 425–435, 2001. View at Publisher · View at Google Scholar · View at Scopus
  28. K. N. Browning, A. E. Kalyuzhny, and R. A. Travagli, “Opioid peptides inhibit excitatory but not inhibitory synaptic transmission in the rat dorsal motor nucleus of the vagus,” Journal of Neuroscience, vol. 22, no. 8, pp. 2998–3004, 2002. View at Scopus
  29. Y. Liu, T. P. Wong, M. Aarts et al., “NMDA receptor subunits have differential roles in mediating excitotoxic neuronal death both in vitro and in vivo,” Journal of Neuroscience, vol. 27, no. 11, pp. 2846–2857, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. V. Mutel, D. Buchy, A. Klingelschmidt et al., “In vitro binding properties in rat brain of [3H] Ro 25-6981, a potent and selective antagonist of NMDA receptors containing NR2B subunits,” Journal of Neurochemistry, vol. 70, no. 5, pp. 2147–2155, 1998. View at Scopus
  31. A. Sato, Y. Sato, A. Suzuki, and S. Uchida, “Neural mechanisms of the reflex inhibition and excitation of gastric motility elicited by acupuncture-like stimulation in anesthetized rats,” Neuroscience Research, vol. 18, no. 1, pp. 53–62, 1993. View at Publisher · View at Google Scholar · View at Scopus
  32. E. Noguchi, “Acupuncture regulates gut motility and secretion via nerve reflexes,” Autonomic Neuroscience, vol. 156, no. 1-2, pp. 15–18, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. A. Willis, M. Mihalevich, R. A. Neff, and D. Mendelowitz, “Three types of postsynaptic glutamatergic receptors are activated in DMNX neurons upon stimulation of NTS,” American Journal of Physiology, vol. 271, no. 6, pp. R1614–R1619, 1996. View at Scopus
  34. D. L. Broussard, H. Li, and S. M. Altschuler, “Colocalization of GABA(A) and NMDA receptors within the dorsal motor nucleus of the vagus nerve (DMV) of the rat,” Brain Research, vol. 763, no. 1, pp. 123–126, 1997. View at Publisher · View at Google Scholar · View at Scopus
  35. M. Tatewaki, M. Harris, K. Uemura et al., “The stimulatory effects of acupuncture on gastric motility is mediated via vagal cholinergic and opioid pathways in conscious rats,” Gastroenterology, vol. 124, Supplement 1, pp. A669–A670, 2003.
  36. H. Monyer, R. Sprengel, R. Schoepfer et al., “Heteromeric NMDA receptors: molecular and functional distinction of subtypes,” Science, vol. 256, no. 5060, pp. 1217–1221, 1992. View at Scopus
  37. J. Nabekura, T. Ueno, S. Katsurabayashi, A. Furuta, N. Akaike, and M. Okada, “Reduced NR2A expression and prolonged decay of NMDA receptor-mediated synaptic current in rat vagal motoneurons following axotomy,” Journal of Physiology, vol. 539, no. 3, pp. 735–741, 2002. View at Publisher · View at Google Scholar · View at Scopus
  38. S. Vicini, J. F. Wang, J. H. Li et al., “Functional and pharmacological differences between recombinant N- methyl-D-aspartate receptors,” Journal of Neurophysiology, vol. 79, no. 2, pp. 555–566, 1998. View at Scopus