About this Journal Submit a Manuscript Table of Contents
Evidence-Based Complementary and Alternative Medicine
Volume 2012 (2012), Article ID 467061, 22 pages
http://dx.doi.org/10.1155/2012/467061
Research Article

Impact of Global Normalization in fMRI Acupuncture Studies

1Life Sciences Research Center, School of Life Sciences and Technology, Xidian University, Xi’an, Shaanxi 710071, China
2Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Sichuan University, Sichuan 610041, China
3Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China

Received 9 July 2012; Accepted 9 September 2012

Academic Editor: Ke Ren

Copyright © 2012 Jinbo Sun et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. Bai, W. Qin, J. Tian et al., “Time-varied characteristics of acupuncture effects in fMRI studies,” Human Brain Mapping, vol. 30, no. 11, pp. 3445–3460, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. F. Beissner, R. Deichmann, C. Henke, and K.-J. Bär, “Acupuncture—deep pain with an autonomic dimension?” NeuroImage, vol. 60, no. 1, pp. 653–660, 2012. View at Publisher · View at Google Scholar · View at Scopus
  3. K. K. S. Hui, J. Liu, O. Marina et al., “The integrated response of the human cerebro-cerebellar and limbic systems to acupuncture stimulation at ST 36 as evidenced by fMRI,” NeuroImage, vol. 27, no. 3, pp. 479–496, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. V. Napadow, R. P. Dhond, J. Kim et al., “Brain encoding of acupuncture sensation—coupling on-line rating with fMRI,” NeuroImage, vol. 47, no. 3, pp. 1055–1065, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. V. Napadow, N. Makris, J. Liu, N. W. Kettner, K. K. Kwong, and K. K. S. Hui, “Effects of electroacupuncture versus manual acupuncture on the human brain as measured by fMRI,” Human Brain Mapping, vol. 24, no. 3, pp. 193–205, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. W. Qin, J. Tian, L. Bai et al., “FMRI connectivity analysis of acupuncture effects on an amygdala-associated brain network,” Molecular Pain, vol. 4, article 55, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. S. S. Yoo, E. K. Teh, R. A. Blinder, and F. A. Jolesz, “Modulation of cerebellar activities by acupuncture stimulation: evidence from fMRI study,” NeuroImage, vol. 22, no. 2, pp. 932–940, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. J. Kong, R. L. Gollub, J. M. Webb, J. T. Kong, M. G. Vangel, and K. Kwong, “Test-retest study of fMRI signal change evoked by electroacupuncture stimulation,” NeuroImage, vol. 34, no. 3, pp. 1171–1181, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. F. Beissner, “Functional magnetic resonance imaging studies of acupuncture mechanisms: a critique,” Focus on Alternative and Complementary Therapies, vol. 16, no. 1, pp. 3–11, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. F. Beissner and C. Henke, “Methodological problems in fMRI studies on acupuncture: a critical review with special emphasis on visual and auditory cortex activations,” Evidence-based Complementary and Alternative Medicine, vol. 2011, Article ID 607637, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. J. Sun, W. Qin, M. Dong et al., “Evaluation of group homogeneity during acupuncture stimulation in fMRI studies,” Journal of Magnetic Resonance Imaging, vol. 32, no. 2, pp. 298–305, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. G. K. Aguirre, E. Zarahn, and M. D'Esposito, “The inferential impact of global signal covariates in functional neuroimaging analyses,” NeuroImage, vol. 8, no. 3, pp. 302–306, 1998. View at Publisher · View at Google Scholar · View at Scopus
  13. A. E. Desjardins, K. A. Kiehl, and P. F. Liddle, “Removal of confounding effects of global signal in functional MRI analyses,” NeuroImage, vol. 13, no. 4, pp. 751–758, 2001. View at Publisher · View at Google Scholar · View at Scopus
  14. M. Gavrilescu, M. E. Shaw, G. W. Stuart, P. Eckersley, I. D. Svalbe, and G. F. Egan, “Simulation of the effects of global normalization procedures in functional MRI,” NeuroImage, vol. 17, no. 2, pp. 532–542, 2002. View at Publisher · View at Google Scholar · View at Scopus
  15. J. Kong, T. J. Kaptchuk, J. M. Webb et al., “Functional neuroanatomical investigation of vision-related acupuncture point specificity—a multisession fMRI study,” Human Brain Mapping, vol. 30, no. 1, pp. 38–46, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. S. Liu, W. Zhou, X. Ruan et al., “Activation of the hypothalamus characterizes the response to acupuncture stimulation in heroin addicts,” Neuroscience Letters, vol. 421, no. 3, pp. 203–208, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. H. MacPherson, G. Green, A. Nevado et al., “Brain imaging of acupuncture: comparing superficial with deep needling,” Neuroscience Letters, vol. 434, no. 1, pp. 144–149, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. V. Napadow, N. Kettner, J. Liu et al., “Hypothalamus and amygdala response to acupuncture stimuli in carpal tunnel syndrome,” Pain, vol. 130, no. 3, pp. 254–266, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. A. U. Asghar, G. Green, M. F. Lythgoe, G. Lewith, and H. MacPherson, “Acupuncture needling sensation: the neural correlates of deqi using fMRI,” Brain Research, vol. 1315, pp. 111–118, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. K. K. S. Hui, O. Marina, J. D. Claunch et al., “Acupuncture mobilizes the brain's default mode and its anti-correlated network in healthy subjects,” Brain Research, vol. 1287, pp. 84–103, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. W. Q. Qiu, J. Claunch, J. Kong et al., “The effects of acupuncture on the brain networks for emotion and cognition: an observation of gender differences,” Brain Research, vol. 1362, pp. 56–67, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. G. K. Aguirre, E. Zarahn, and M. D'Esposito, “Empirical analyses of BOLD fMRI statistics. II. Spatially smoothed data collected under null-hypothesis and experimental conditions,” NeuroImage, vol. 5, no. 3, pp. 199–212, 1997. View at Publisher · View at Google Scholar · View at Scopus
  23. J. L. R. Andersson, “How to estimate global activity independent of changes in local activity,” NeuroImage, vol. 6, no. 4, pp. 237–244, 1997. View at Publisher · View at Google Scholar · View at Scopus
  24. M. Junghöfer, H. T. Schupp, R. Stark, and D. Vaitl, “Neuroimaging of emotion: empirical effects of proportional global signal scaling in fMRI data analysis,” NeuroImage, vol. 25, no. 2, pp. 520–526, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. K. Murphy, R. M. Birn, D. A. Handwerker, T. B. Jones, and P. A. Bandettini, “The impact of global signal regression on resting state correlations: are anti-correlated networks introduced?” NeuroImage, vol. 44, no. 3, pp. 893–905, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. L. Bai, W. Qin, J. Tian et al., “Time-varied characteristics of acupuncture effects in fMRI studies,” Human Brain Mapping, vol. 30, no. 11, pp. 3445–3460, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. J. Kong, R. Gollub, T. Huang et al., “Acupuncture De Qi, from qualitative history to quantitative measurement,” Journal of Alternative and Complementary Medicine, vol. 13, no. 10, pp. 1059–1070, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. Z. Q. Zhao, “Neural mechanism underlying acupuncture analgesia,” Progress in Neurobiology, vol. 85, no. 4, pp. 355–375, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. P. J. Laurienti, “Deactivations, global signal, and the default mode of brain function,” Journal of Cognitive Neuroscience, vol. 16, no. 9, pp. 1481–1483, 2004. View at Publisher · View at Google Scholar · View at Scopus
  30. P. M. Macey, K. E. Macey, R. Kumar, and R. M. Harper, “A method for removal of global effects from fMRI time series,” NeuroImage, vol. 22, no. 1, pp. 360–366, 2004. View at Publisher · View at Google Scholar · View at Scopus
  31. K. K. S. Hui, O. Marina, J. Liu, B. R. Rosen, and K. K. Kwong, “Acupuncture, the limbic system, and the anticorrelated networks of the brain,” Autonomic Neuroscience, vol. 157, no. 1-2, pp. 81–90, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. K. K. S. Hui, J. Liu, N. Makris et al., “Acupuncture modulates the limbic system and subcortical gray structures of the human brain: evidence from fMRI studies in normal subjects,” Human Brain Mapping, vol. 9, no. 1, pp. 13–25, 2000. View at Publisher · View at Google Scholar · View at Scopus
  33. J. Fang, Z. Jin, Y. Wang et al., “The salient characteristics of the central effects of acupuncture needling: limbic-paralimbic-neocortical network modulation,” Human Brain Mapping, vol. 30, no. 4, pp. 1196–1206, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. J. L. Fang, T. Krings, J. Weidemann, I. G. Meister, and A. Thron, “Functional MRI in healthy subjects during acupuncture: different effects of needle rotation in real and false acupoints,” Neuroradiology, vol. 46, no. 5, pp. 359–362, 2004. View at Publisher · View at Google Scholar · View at Scopus
  35. T. J. Ho, J. R. Duann, C. M. Chen et al., “Carryover effects alter fMRI statistical analysis in an acupuncture study,” American Journal of Chinese Medicine, vol. 36, no. 1, pp. 55–70, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. G. Li, C. R. Jack, and E. S. Yang, “An fMRI study of somatosensory-implicated acupuncture points in stable somatosensory stroke patients,” Journal of Magnetic Resonance Imaging, vol. 24, no. 5, pp. 1018–1024, 2006. View at Publisher · View at Google Scholar · View at Scopus
  37. G. Li, R. T. F. Cheung, Q. Y. Ma, and E. S. Yang, “Visual cortical activations on fMRI upon stimulation of the vision-implicated acupoints,” NeuroReport, vol. 14, no. 5, pp. 669–673, 2003. View at Publisher · View at Google Scholar · View at Scopus
  38. G. Li, L. Huang, R. T. F. Cheung, S. R. Liu, Q. Y. Ma, and E. S. Yang, “Cortical activations upon stimulation of the sensorimotor-implicated acupoints,” Magnetic Resonance Imaging, vol. 22, no. 5, pp. 639–644, 2004. View at Publisher · View at Google Scholar · View at Scopus
  39. B. Yan, K. Li, J. Xu et al., “Acupoint-specific fMRI patterns in human brain,” Neuroscience Letters, vol. 383, no. 3, pp. 236–240, 2005. View at Publisher · View at Google Scholar · View at Scopus
  40. B. J. Na, G. H. Jahng, S. U. Park et al., “An fMRI study of neuronal specificity of an acupoint: electroacupuncture stimulation of Yanglingquan (GB34) and its sham point,” Neuroscience Letters, vol. 464, no. 1, pp. 1–5, 2009. View at Publisher · View at Google Scholar · View at Scopus
  41. J. H. Zhang, X. D. Cao, J. Li, W. J. Tang, H. Q. Liu, and X. Y. Feng, “Neuronal specificity of needling acupoints at same meridian: a control functional magnetic resonance imaging study with electroacupuncture,” Acupuncture and Electro-Therapeutics Research, vol. 32, no. 3-4, pp. 179–193, 2007. View at Scopus
  42. J. H. Zhang, J. Li, X. D. Cao, and X. Y. Feng, “Can electroacupuncture affect the sympathetic activity, estimated by skin temperature measurement? A functional MRI study on the effect of needling at GB 34 and GB 39 on patients with pain in the lower extremity.,” Acupuncture & Electro-Therapeutics Research, vol. 34, no. 3-4, pp. 151–164, 2009. View at Scopus
  43. N. C. Andreasen, D. S. O'Leary, T. Cizadlo et al., “Remembering the past: two facets of episodic memory explored with positron emission tomography,” American Journal of Psychiatry, vol. 152, no. 11, pp. 1576–1585, 1995. View at Scopus
  44. R. L. Buckner and D. C. Carroll, “Self-projection and the brain,” Trends in Cognitive Sciences, vol. 11, no. 2, pp. 49–57, 2007. View at Publisher · View at Google Scholar · View at Scopus
  45. D. A. Gusnard, E. Akbudak, G. L. Shulman, and M. E. Raichle, “Medial prefrontal cortex and self-referential mental activity: relation to a default mode of brain function,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 7, pp. 4259–4264, 2001. View at Publisher · View at Google Scholar · View at Scopus
  46. D. Hassabis and E. A. Maguire, “Deconstructing episodic memory with construction,” Trends in Cognitive Sciences, vol. 11, no. 7, pp. 299–306, 2007. View at Publisher · View at Google Scholar · View at Scopus
  47. D. L. Schacter and D. R. Addis, “The cognitive neuroscience of constructive memory: remembering the past and imagining the future,” Philosophical Transactions of the Royal Society B, vol. 362, no. 1481, pp. 773–786, 2007. View at Publisher · View at Google Scholar · View at Scopus
  48. R. N. Spreng, R. A. Mar, and A. S. N. Kim, “The common neural basis of autobiographical memory, prospection, navigation, theory of mind, and the default mode: a quantitative meta-analysis,” Journal of Cognitive Neuroscience, vol. 21, no. 3, pp. 489–510, 2009. View at Publisher · View at Google Scholar · View at Scopus
  49. J. R. Binder, “Task-induced deactivation and the “resting” state,” NeuroImage, vol. 62, no. 2, pp. 1086–1091, 2012. View at Publisher · View at Google Scholar · View at Scopus
  50. R. G. Shulman, D. L. Rothman, and F. Hyder, “A BOLD search for baseline,” NeuroImage, vol. 36, no. 2, pp. 277–281, 2007. View at Publisher · View at Google Scholar · View at Scopus
  51. E. Zarahn, G. K. Aguirre, and M. D'Esposito, “Empirical analyses of BOLD fMRI statistics. I. Spatially unsmoothed data collected under null-hypothesis conditions,” NeuroImage, vol. 5, no. 3, pp. 179–197, 1997. View at Publisher · View at Google Scholar · View at Scopus
  52. L. Bai, J. Tian, C. Zhong et al., “Acupuncture modulates temporal neural responses in wide brain networks: evidence from fMRI study,” Molecular Pain, vol. 6, article 73, 2010. View at Publisher · View at Google Scholar · View at Scopus
  53. Y. Zhang, W. Qin, P. Liu et al., “An fMRI study of acupuncture using independent component analysis,” Neuroscience Letters, vol. 449, no. 1, pp. 6–9, 2009. View at Publisher · View at Google Scholar · View at Scopus
  54. J. Liu, W. Qin, Q. Guo et al., “Divergent neural processes specific to the acute and sustained phases of verum and SHAM acupuncture,” Journal of Magnetic Resonance Imaging, vol. 33, no. 1, pp. 33–40, 2011. View at Publisher · View at Google Scholar · View at Scopus
  55. J. Liu, W. Qin, Q. Guo et al., “Distinct brain networks for time-varied characteristics of acupuncture,” Neuroscience Letters, vol. 468, no. 3, pp. 353–358, 2010. View at Publisher · View at Google Scholar · View at Scopus
  56. L. Li, W. Qin, L. Bai, and J. Tian, “Exploring vision-related acupuncture point specificity with multivoxel pattern analysis,” Magnetic Resonance Imaging, vol. 28, no. 3, pp. 380–387, 2010. View at Publisher · View at Google Scholar · View at Scopus
  57. R. A. Poldrack, “Can cognitive processes be inferred from neuroimaging data?” Trends in Cognitive Sciences, vol. 10, no. 2, pp. 59–63, 2006. View at Publisher · View at Google Scholar · View at Scopus
  58. R. A. Poldrack, “The role of fMRI in Cognitive Neuroscience: where do we stand?” Current Opinion in Neurobiology, vol. 18, no. 2, pp. 223–227, 2008. View at Publisher · View at Google Scholar · View at Scopus
  59. R. A. Poldrack, “The future of fMRI in cognitive neuroscience,” NeuroImage, vol. 62, no. 2, pp. 1216–1220, 2012. View at Publisher · View at Google Scholar · View at Scopus