About this Journal Submit a Manuscript Table of Contents
Evidence-Based Complementary and Alternative Medicine
Volume 2012 (2012), Article ID 472821, 8 pages
http://dx.doi.org/10.1155/2012/472821
Research Article

The ent-15 -Acetoxykaur-16-en-19-oic Acid Relaxes Rat Artery Mesenteric Superior via Endothelium-Dependent and Endothelium-Independent Mechanisms

1Escola de Enfermagem e Farmácia, Universidade Federal de Alagoas, Cidade Universitária, Tabuleiro dos Martins, 57072-970 Maceió, AL, Brazil
2Laboratório de Tecnologia Farmacêutica, Universidade Federal da Paraíba, P.O. Box 5009, 58051-970 João Pessoa, PB, Brazil
3Departamento de Farmácia, CCBS, Universidade Estadual da Paraíba, 58100-000 Campina Grande, PB, Brazil

Received 21 August 2012; Revised 7 November 2012; Accepted 13 November 2012

Academic Editor: Jairo Kenupp Bastos

Copyright © 2012 Êurica Adélia Nogueira Ribeiro et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. A. Mansoor, “Herbs and alternative therapies in the hypertension clinic,” American Journal of Hypertension, vol. 14, no. 9 I, pp. 971–975, 2001. View at Publisher · View at Google Scholar · View at Scopus
  2. J. C. Prado, E. Kupek, and D. Mion, “Validity of four indirect methods to measure adherence in primary care hypertensives,” Journal of Human Hypertension, vol. 21, pp. 309–312, 2007. View at Scopus
  3. C. R. Tirapelli, S. R. Ambrosio, A. M. de Oliveira, and R. C. Tostes, “Hypotensive action of naturally occurring diterpenes: a therapeutic promise for the treatment of hypertension,” Fitoterapia, vol. 81, no. 7, pp. 690–702, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. K. Ohashi, T. Bohgaki, T. Matsubara, and H. Shibuya, “Jamu as a Javanese traditional medicine in Indonésia,” in Proceedings of the Bioresources Diversity, Ethnobiology Development and Sustainability International Centenary Conference, Sydney, Australia, 1991.
  5. K. Ohashi, T. Bohgaki, T. Matsubara, and H. Shibuya, “Chemical structures of two new migrated pimarane-type diterpenes, neoorthosiphols A and B, and suppressive effects on rat thoracic aorta of chemical constituents isolated from the leaves of Orthosiphon aristatus (Lamiaceae),” Chemical and Pharmaceutical Bulletin, vol. 48, pp. 433–435, 2000.
  6. S. E. Bardai, B. Lyoussi, M. Wibo, and N. Morel, “Pharmacological evidence of hypotensive activity of Marrubium vulgare and Foeniculum vulgare in spontaneously hypertensive rat,” Clinical and Experimental Hypertension, vol. 23, no. 4, pp. 329–343, 2001. View at Publisher · View at Google Scholar · View at Scopus
  7. J. F. Morton, Atlas of Medicinal Plants of Middle Americana, Thomas CC, Spriingfield, Ill, USA, 1981.
  8. J. C. Sacchettini and C. D. Poulter, “Creating isoprenoid diversity,” Science, vol. 277, no. 5333, pp. 1788–1789, 1997. View at Publisher · View at Google Scholar · View at Scopus
  9. P. M. Dewick, “The biosynthesis of C5-C25 terpenoid compounds,” Natural Product Reports, vol. 19, no. 2, pp. 181–222, 2002. View at Publisher · View at Google Scholar · View at Scopus
  10. V. S. Dubey, R. Bhalla, and R. Luthra, “An overview of the non-mevalonate pathway for terpenoid biosynthesis in plants,” Journal of Biosciences, vol. 28, no. 5, pp. 637–646, 2003. View at Scopus
  11. C. R. Tirapelli, S. R. Ambrosio, F. B. da Costa, S. T. Coutinho, D. C. R. de Oliveira, and A. M. de Oliveira, “Analysis of the mechanisms underlying the vasorelaxant action of kaurenoic acid in the isolated rat aorta,” European Journal of Pharmacology, vol. 492, no. 2-3, pp. 233–241, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. C. R. Tirapelli, S. R. Ambrosio, F. B. da Costa, and A. M. de Oliveira, “Antispasmodic and relaxant actions of kaurenoic acid (KA) isolated from Viguiera robusta on rat carotid,” Brazilian Journal of Pharmaceutical Sciences, vol. 39, supplement 2, article 148, 2003.
  13. M. S. Melis and A. R. Sainati, “Effect of calcium and verapamil on renal function of rats during treatment with stevioside,” Journal of Ethnopharmacology, vol. 33, no. 3, pp. 257–262, 1991. View at Scopus
  14. C. N. Lee, K. L. Wong, J. C. Liu, Y. J. Chen, J. T. Cheng, and P. Chan, “Inhibitory effect of stevioside on calcium influx to produce antihypertension,” Planta Medica, vol. 67, no. 9, pp. 796–799, 2001. View at Publisher · View at Google Scholar · View at Scopus
  15. C. R. Tirapelli, M. D. A. Filho, D. Bonaventura et al., “Pimaradienoic acid inhibits vascular contraction and induces hypotension in normotensive rats,” Journal of Pharmacy and Pharmacology, vol. 60, no. 4, pp. 453–459, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. U. V. Hipólito, G. J. Rodrigues, C. N. Lunardi et al., “Mechanisms underlying the vasorelaxant action of the pimarane ent-8(14),15-pimaradien-3β-ol in the isolated rat aorta,” European Journal of Pharmacology, vol. 616, no. 1–3, pp. 183–191, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. S. Müller, C. R. Tirapelli, A. M. de Oliveira, R. Murillo, V. Castro, and I. Merfort, “Studies of ent-kaurane diterpenes from Oyedaea verbesinoides for their inhibitory activity on vascular smooth muscle contraction,” Phytochemistry, vol. 63, no. 4, pp. 391–396, 2003. View at Scopus
  18. J. A. Takahashi, H. S. Vieira, M. A. D. Boaventura, J. R. Hanson, P. B. Hitchcock, and A. B. de Oliveira, “Mono and diterpenes from seeds of xylopia sericea,” Quimica Nova, vol. 24, no. 5, pp. 616–618, 2001. View at Scopus
  19. N. C. de Andrade, J. M. Barbosa-Filho, M. S. da Silva, E. V. L. da Cunha, and J. G. S. Maia, “Diterpenes and volatile constituents from the leaves of Xylopia cayennensis,” Biochemical Systematics and Ecology, vol. 32, no. 11, pp. 1055–1058, 2004. View at Publisher · View at Google Scholar · View at Scopus
  20. K. Sakata and H. Karaki, “Effects of a novel smooth muscle relaxant, KT-362, on contraction and cytosolic Ca2+ level in the rat aorta,” British Journal of Pharmacology, vol. 102, no. 1, pp. 174–178, 1991. View at Scopus
  21. S. Monacada and J. R. Vane, “Pharmacology and endogenous roles of prostaglandins endoperoxydes, throboxane a2 and prostacyclin,” Pharmacological Reviews, vol. 30, pp. 293–331, 1997.
  22. P. M. Vanhoutte, C. M. Boulanger, and J. V. Mombouli, “Endothelium-derived relaxing factors and converting enzyme inhibition,” American Journal of Cardiology, vol. 76, no. 15, pp. 3E–12E, 1995. View at Publisher · View at Google Scholar · View at Scopus
  23. N. Toda and T. Okamura, “The pharmacology of nitric oxide in the peripheral nervous system of blood vessels,” Pharmacological Reviews, vol. 55, no. 2, pp. 271–324, 2003. View at Publisher · View at Google Scholar · View at Scopus
  24. H. Kruszyna, J. S. Magyar, L. G. Rochelle, M. A. Russell, R. P. Smith, and D. E. Wilcox, “Spectroscopic studies of nitric oxide (NO) interactions with cobalamins: reaction of NO with superoxocobalamin(III) likely accounts for cobalamin reversal of the biological effects of NO,” Journal of Pharmacology and Experimental Therapeutics, vol. 285, no. 2, pp. 665–671, 1998. View at Scopus
  25. T. A. Bruning, M. G. C. Hendriks, P. C. Chang, E. A. P. Kuypers, and P. A. van Zwieten, “In vivo characterization of vasodilating muscarinic-receptor subtypes in humans,” Circulation Research, vol. 74, no. 5, pp. 912–919, 1994. View at Scopus
  26. Y. Sawada, T. Sakamaki, T. Nakamura, K. Sato, Z. Ono, and K. Murata, “Release of nitric oxide in response to acetylcholine is unaltered in spontaneously hypertensive rats,” Journal of Hypertension, vol. 12, no. 7, pp. 745–750, 1994. View at Scopus
  27. K. Sato, H. Ninomiya, S. Ohkura, H. Ozaki, and T. Nasu, “Impairment of PAR-2-mediated relaxation system in colonic smooth muscle after intestinal inflammation,” British Journal of Pharmacology, vol. 148, no. 2, pp. 200–207, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. J. J. Hwa, L. Ghibaudi, P. Williams, and M. Chatterjee, “Comparison of acetylcholine-dependent relaxation in large and small arteries of rat mesenteric vascular bed,” American Journal of Physiology, vol. 266, no. 3, pp. H952–H958, 1994. View at Scopus
  29. H. Shimokawa, H. Yasutake, K. Fujii et al., “The importance of the hyperpolarizing mechanism increases as the vessel size decreases in endothelium-dependent relaxations in rat mesenteric circulation,” Journal of Cardiovascular Pharmacology, vol. 28, no. 5, pp. 703–711, 1996. View at Publisher · View at Google Scholar · View at Scopus
  30. H. Tomioka, Y. Hattori, M. Fukao et al., “Relaxation in different-sized rat blood vessels mediated by endothelium- derived hyperpolarizing factor: importance of processes mediating precontractions,” Journal of Vascular Research, vol. 36, no. 4, pp. 311–320, 1999. View at Publisher · View at Google Scholar · View at Scopus
  31. G. Edwards, K. A. Dora, M. J. Gardener, C. J. Garland, and A. H. Weston, “K+ is an endothelium-derived hyperpolarizing factor in rat arteries,” Nature, vol. 396, no. 6708, pp. 269–272, 1998. View at Publisher · View at Google Scholar · View at Scopus
  32. B. Fissithaler, R. Popp, L. Kiss et al., “Cytochrome P450 2C is an EDHF synthase in coronary arteries,” Nature, vol. 401, no. 6752, pp. 493–497, 1999. View at Publisher · View at Google Scholar · View at Scopus
  33. M. Feletou and P. M. Vanhoutte, “Endothelium-dependent hyperpolarization of canine coronary smooth muscle,” British Journal of Pharmacology, vol. 93, no. 3, pp. 515–524, 1988. View at Scopus
  34. T. Nagao and P. M. Vanhoutte, “Hyperpolarization as a mechanism for endothelium-dependent relaxations in the porcine coronary artery,” Journal of Physiology, vol. 445, pp. 355–367, 1992. View at Scopus
  35. H. E. Guo-Wei, C. Q. Yang, W. F. Graier, and J. A. N. Yang, “Hyperkalemia alters EDHF-mediated hyperpolarization and relaxation in coronary arteries,” American Journal of Physiology, vol. 271, no. 2, pp. H760–H767, 1996. View at Scopus
  36. M. T. Nelson and J. M. Quayle, “Physiological roles and properties of potassium channels in arterial smooth muscle,” American Journal of Physiology, vol. 268, no. 4, pp. C799–C822, 1995. View at Scopus
  37. W. B. Campbell, D. Gebremedhin, P. F. Pratt, and D. R. Harder, “Identification of epoxyeicosatrienoic acids as endothelium-derived hyperpolarizing factors,” Circulation Research, vol. 78, no. 3, pp. 415–423, 1996. View at Scopus
  38. J. R. McNeill and T. M. Jurgens, “A systematic review of mechanisms by which natural products of plant origin evoke vasodilatation,” Canadian Journal of Physiology and Pharmacology, vol. 84, no. 8-9, pp. 803–821, 2006. View at Publisher · View at Google Scholar · View at Scopus
  39. H. Y. Kim, H. Oh, X. Li, K. W. Cho, D. G. Kang, and H. S. Lee, “Ethanol extract of seeds of Oenothera odorata induces vasorelaxation via endothelium-dependent NO-cGMP signaling through activation of Akt-eNOS-sGC pathway,” Journal of Ethnopharmacology, vol. 133, no. 2, pp. 315–323, 2011. View at Publisher · View at Google Scholar · View at Scopus
  40. T. Münzel, R. Feil, A. Mülsch, S. M. Lohmann, F. Hofmann, and U. Walter, “Physiology and pathophysiology of vascular signaling controlled by cyclic guanosine 3',5'-cyclic monophosphate-dependent protein kinase,” Circulation, vol. 108, no. 18, pp. 2172–2183, 2003. View at Publisher · View at Google Scholar · View at Scopus
  41. C. H. Lee, D. Poburko, P. Sahota, J. Sandhu, D. O. Ruehlmann, and C. van Breemen, “The mechanism of phenylephrine-mediated [Ca2+]i oscillations underlying tonic contraction in the rabbit inferior vena cava,” Journal of Physiology, vol. 534, no. 3, pp. 641–650, 2001. View at Publisher · View at Google Scholar · View at Scopus
  42. A. P. Somlyo and A. V. Somlyo, “Signal transduction and regulation in smooth muscle,” Nature, vol. 372, no. 6503, pp. 231–236, 1994. View at Publisher · View at Google Scholar · View at Scopus
  43. P. H. Ratz and K. M. Berg, “2-Aminoethoxydiphenyl borate inhibits KCl-induced vascular smooth muscle contraction,” European Journal of Pharmacology, vol. 541, no. 3, pp. 177–183, 2006. View at Publisher · View at Google Scholar · View at Scopus
  44. P. A. A. Leijten and C. van Breemen, “The effects of caffeine on the noradrenaline-sensitive calcium store in rabbit aorta,” Journal of Physiology, vol. 357, pp. 327–339, 1984. View at Scopus
  45. C. R. Tirapelli, S. R. Ambrosio, F. B. da Costa, and A. M. de Oliveira, “Evidence for the mechanisms underlying the effects of pimaradienoic acid isolated from the roots of Viguiera arenaria on rat aorta,” Pharmacology, vol. 70, no. 1, pp. 31–38, 2004. View at Publisher · View at Google Scholar · View at Scopus
  46. D. F. P. Duarte, A. E. G. Sant'Ana, and J. B. Calixto, “Analysis of the vasorelaxant action of jatrophone in the isolated aorta of the rat: influence of potassium channel blockers,” European Journal of Pharmacology, vol. 215, no. 1, pp. 75–81, 1992. View at Publisher · View at Google Scholar · View at Scopus
  47. M. J. Mulvany and C. Aalkjaer, “Structure and function of small arteries,” Physiological Reviews, vol. 70, no. 4, pp. 921–951, 1990.