About this Journal Submit a Manuscript Table of Contents
Evidence-Based Complementary and Alternative Medicine
Volume 2012 (2012), Article ID 473637, 25 pages
http://dx.doi.org/10.1155/2012/473637
Review Article

Boesenbergia rotunda: From Ethnomedicine to Drug Discovery

1Department of Molecular Medicine, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
2Drug Design and Development Research Group (DDDRG), University of Malaya, 50603 Kuala Lumpur, Malaysia
3Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
4Division of Pharmacy, School of Pharmacy and Health Sciences, International Medical University (IMU), Bukit Jalil, 57000 Kuala Lumpur, Malaysia
5Department of Pharmacy, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
6Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
7Biotechnology and Bioproduct Research Cluster (UMBIO), University of Malaya, 50603 Kuala Lumpur, Malaysia

Received 26 June 2012; Accepted 6 August 2012

Academic Editor: Y. Ohta

Copyright © 2012 Tan Eng-Chong et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. G. Baker, “Flora of British India,” in Scitamineae, J. D. Hooker, Ed., vol. 6, Reeve & Co., London, UK, 1890.
  2. The Plant List, V. 2010, Royal Botanic Gardens, Kew and Missouri Botanical Garden.
  3. W. J. Kress, L. M. Prince, and K. J. Williams, “The phylogeny and a new classification of the gingers (Zingiberaceae): evidence from molecular data,” American Journal of Botany, vol. 89, no. 10, pp. 1682–1696, 2002. View at Scopus
  4. J. Techaprasan, C. Ngamriabsakul, S. Klinbunga, S. Chusacultanachai, and T. Jenjittikul, “Genetic variation and species identification of Thai Boesenbergia (Zingiberaceae) analyzed by chloroplast DNA polymorphism,” Journal of Biochemistry and Molecular Biology, vol. 39, no. 4, pp. 361–370, 2006. View at Scopus
  5. O. Vanijajiva, P. Sirirugsa, and W. Suvachittanont, “Confirmation of relationships among Boesenbergia (Zingiberaceae) and related genera by RAPD,” Biochemical Systematics and Ecology, vol. 33, no. 2, pp. 159–170, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. J. Chen and N. H. Xia, “Pollen morphology of Chinese Curcuma L. and Boesenbergia Kuntz (Zingiberaceae): taxonomic implications,” Flora, vol. 206, no. 5, pp. 458–467, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. J. Techaprasan, S. Klinbunga, and T. Jenjittikul, “Genetic relationships and species authentication of Boesenbergia (Zingiberaceae) in Thailand based on AFLP and SSCP analyses,” Biochemical Systematics and Ecology, vol. 36, no. 5-6, pp. 408–416, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. L. Eksomtramage and K. Boontum, “Chromosome counts of Zingiberaceae,” Songklanakarin Journal of Science & Technology, vol. 17, no. 3, pp. 291–297, 1995.
  9. L. Eksomtramage, A. Augsonkitt, and P. Sirirugsa, “Chromosome counts of some Zingiberaceous species from Thailand,” Songklanakarin Journal of Science & Technology, vol. 24, no. 2, pp. 311–3319, 2002.
  10. Boesenbergia Kuntze,” in Flora of China, pp. 367–368, 2000.
  11. P. Sirirugsa, “A revision of the genus Boesenbergia Kuntze (Zingiberaceae) in Thailand,” Natural History Bulletin of the Siam Society, vol. 40, pp. 67–90, 1992.
  12. R. R. Chaudhury and U. M. Rafei, Traditional Medicine in Asia, R.O.f.S.E.A. World Health Organization, SEARO Regional Publications, New Delhi, India, 2001.
  13. W. Chuakul and A. Boonpleng, “Ethnomedical uses of Thai Zingiberaceous plant,” Journal of Medicinal, vol. 10, no. 1, pp. 33–39, 2003.
  14. C. P. Salguero, “A Thai herbal,” in Traditional Recipes For Health and Harmony, L. Barton, Ed., Findhorn Press, Forres, Scotland, 2003.
  15. S. Riswan and H. Sangat-Roenian, “Jamu as tradition in Java, Indonesia,” South Paciflc Study, vol. 23, no. 1, pp. 1–10, 2002.
  16. T. Jaipetch, S. Kanghae, O. Pancheroen, et al., “Constituents of Boesenbergia pandurata (syn. Kaempferia pandurata): isolation, crystal structure and synthesis of (±)-Boesenbergin A,” Australian Journal of Chemistry, vol. 35, no. 2, pp. 351–361, 1982.
  17. T. Jaipetch, V. Reutrakul, P. Tuntiwachwuttikul, and T. Santisuk, “Flavonoids in the black rhizomes of Boesenbergia pandurata,” Phytochemistry, vol. 22, no. 2, pp. 625–626, 1983. View at Scopus
  18. P. Tuntiwachwutiikul, O. Pancharoen, U. Reutrakul, and L. T. Byrne, “(1′RS, 2′SR, 6′RS)-(2, 6-dihydroxy-4-methoxy-phenyl)-[3′-methyl-2′-(3-methylene-2-enyl)-6′phenyl-cyclohex-3′-enyl] methanone (panduratin A) a constituent of the red rhizomes of a variety of Boesenbergia pandurata,” Australian Journal of Chemistry, vol. 37, pp. 449–453, 1984.
  19. C. Mahidol, P. Tuntiwachwuttikul, V. Reutrakul, and W. C. Taylor, “Constituents of Boesenbergia pandurata (syn. Kaempferia pandurata). III. Isolation and synthesis of (±)-boesenbergin B,” Australian Journal of Chemistry, vol. 37, no. 8, pp. 1739–1745, 1984.
  20. A. Herunsalee, O. Pancharoen, and P. Tuntiwachwuttikul, “Further studies of flavonoids of the black rhizomes Boesenbergia pandurata,” Journal of the Science Society of Thailand, vol. 13, pp. 119–122, 1987.
  21. O. Pancharoen, K. Picker, V. Reutrakul, W. C. Taylor, and P. Tuntiwachwuttikul, “Constituents of the zingiberaceae. X. Diastereomers of [7-Hydroxy-5-Methoxy-2-Methyl-2-(4′-Methylpent-3′-Enyl)-2H-Chromen-8-yl] [3-Methyl-2′-(3-Methylbut-2-Enyl]-6-Phenylcyclohex-3-Enyl]M Ethanone (Panduratin B), a constituent of the red rhizomes of a variety of Boesenbergia pandurata,” Australian Journal of Chemistry, vol. 40, no. 3, pp. 455–459, 1987.
  22. S. Tip-pyang, S. Sathanasaowapak, U. Kokpol, and P. Phuwapraisirisan, “Antibaterial flavonoids from Boesenbergia pandurata,” ACGC Chemical Research Communications, vol. 10, pp. 21–26, 2000.
  23. G. Trakoontivakorn, K. Nakahara, H. Shinmoto et al., “Structural analysis of a novel antimutagenic compound, 4-hydroxypanduratin A, and the antimutagenic activity of flavonoids in a Thai spice, fingerroot (Boesenbergia pandurata Schult.) against mutagenic heterocyclic amines,” Journal of Agricultural and Food Chemistry, vol. 49, no. 6, pp. 3046–3050, 2001. View at Scopus
  24. I. B. Jantan, I. Basni, A. S. Ahmad, N. A. M. Ali, A. R. Ahmad, and H. Ibrahim, “Constituents of the rhizome oils of Boesenbergia pandurata (Roxb.) Schlecht from Malaysia, Indonesia and Thailand,” Flavour and Fragrance Journal, vol. 16, no. 2, pp. 110–112, 2001. View at Publisher · View at Google Scholar · View at Scopus
  25. P. Tuchinda, V. Reutrakul, P. Claeson et al., “Anti-inflammatory cyclohexenyl chalcone derivatives in Boesenbergia pandurata,” Phytochemistry, vol. 59, no. 2, pp. 169–173, 2002. View at Publisher · View at Google Scholar · View at Scopus
  26. S. Tewtrakul, S. Subhadhirasakul, and S. Kummee, “HIV-1 protease inhibitory effects of medicinal plants used as self medication by AIDS patients,” Songklanakarin Journal of Science & Technology, vol. 25, no. 2, pp. 239–243, 2003.
  27. S. Tewtrakul, S. Subhadhirasakul, J. Puripattanavong, and T. Panphadung, “HIV-1 protease inhibitory substances from the rhizomes of Boesenbergia pandurata Holtt,” Songklanakarin Journal of Science & Technology, vol. 25, no. 4, p. 6, 2003.
  28. S. Zaeoung, A. Plubrukarn, and N. Keawpradub, “Cytotoxic and free radical scavenging activities of Zingiberaceous rhizomes,” Songklanakarin Journal of Science & Technology, vol. 27, no. 4, pp. 799–812, 2005.
  29. K. Shindo, M. Kato, A. Kinoshita, A. Kobayashi, and Y. Koike, “Analysis of antioxidant activities contained in the Boesenbergia pandurata Schult. rhizome,” Bioscience, Biotechnology and Biochemistry, vol. 70, no. 9, pp. 2281–2284, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. S. Cheenpracha, C. Karalai, C. Ponglimanont, S. Subhadhirasakul, and S. Tewtrakul, “Anti-HIV-1 protease activity of compounds from Boesenbergia pandurata,” Bioorganic and Medicinal Chemistry, vol. 14, no. 6, pp. 1710–1714, 2006. View at Publisher · View at Google Scholar · View at Scopus
  31. S. K. Tan, Flavonoids from Boesenbergia rotunda (L.) Mansf.: chemistry, bioactivity and accumulation, [Ph.D. Dissertation], Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia, 2005.
  32. N. W. Nwet, S. Awale, H. Esumi, Y. Tezuka, and S. Kadota, “Bioactive secondary metabolites from Boesenbergia pandurata of Myanmar and their preferential cytotoxicity against human pancreatic cancer PANC-1 cell line in nutrient-deprived medium,” Journal of Natural Products, vol. 70, no. 10, pp. 1582–1587, 2007. View at Publisher · View at Google Scholar · View at Scopus
  33. A. Y. L. Ching, T. S. Wah, M. A. Sukari, G. E. C. Lian, M. Rahmani, and K. Khalid, “Characterization of flavonoid derivatives from Boesenbergia rotunda (L.),” The Malaysian Journal of Analytical Sciences, vol. 11, no. 1, pp. 154–159, 2007.
  34. M. A. Sukari, A. Y. L. Ching, G. E. C. Lian, M. Rahmani, and K. Khalid, “Cytotoxic constituents from Boesenbergia pandurata (Roxb.) Schltr,” Natural Product Sciences, vol. 13, no. 2, pp. 110–113, 2007. View at Scopus
  35. T. Morikawa, K. Funakoshi, K. Ninomiya et al., “Medicinal foodstuffs. XXXIV.1) Structures of new prenylchalcones and prenylflavanones with TNF-αand aminopeptidase N inhibitory activities from Boesenbergia rotunda,” Chemical and Pharmaceutical Bulletin, vol. 56, no. 7, pp. 956–962, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. M. A. Sukari, N. W. M. Sharif, A. Y. L. Ching, G. E. C. Lian, M. Rahmani, and K. Khalid, “Chemical constituents variations of essential oils from rhizomes of four Zingiberaceae species,” The Malaysian Journal of Analytical Sciences, vol. 12, no. 3, pp. 638–644, 2008.
  37. N. N. Win, S. Awale, H. Esumi, Y. Tezuka, and S. Kadota, “Panduratins D-I, novel secondary metabolites from rhizomes of Boesenbergia pandurata,” Chemical and Pharmaceutical Bulletin, vol. 56, no. 4, pp. 491–496, 2008. View at Publisher · View at Google Scholar · View at Scopus
  38. S. Tewtrakul, S. Subhadhirasakul, C. Karalai, C. Ponglimanont, and S. Cheenpracha, “Anti-inflammatory effects of compounds from Kaempferia parviflora and Boesenbergia pandurata,” Food Chemistry, vol. 115, no. 2, pp. 534–538, 2009. View at Publisher · View at Google Scholar · View at Scopus
  39. L. J. Jing, M. Mohamed, A. Rahmat, and M. F. A. Bakar, “Phytochemicals, antioxidant properties and anticancer investigations of the different parts of several gingers species (Boesenbergia rotunda, Boesenbergia pulchella var attenuata and Boesenbergia armeniaca),” Journal of Medicinal Plant Research, vol. 4, no. 1, pp. 27–32, 2010. View at Scopus
  40. P. Saraithong, S. Saenphet, and K. Saenphet, “Safety evaluation of ethanol extracts from Boesenbergia rotunda (L.) Mansf. in male rats,” Trends Research in Science and Technology, vol. 2, no. 1, pp. 19–22, 2010.
  41. S. Charoensin, et al., “Toxicological and clastogenic evaluation of pinocembrin and pinostrobin isolated from Boesenbergia pandurata in Wistar rats,” Thai Journal of Toxicology, vol. 25, no. 1, pp. 29–40, 2010.
  42. S. Bhamarapravati, S. Juthapruth, W. Mahachai, and G. Mahady, “Antibacterial activity of Boesenbergia rotunda (L.) mansf. and myristica fragrans houtt. against helicobacter pylori,” Songklanakarin Journal of Science and Technology, vol. 28, no. 1, pp. 157–163, 2006. View at Scopus
  43. G. B. Mahady, S. Bhamarapravati, B. A. Adeniyi, et al., “Traditional Thai medicines inhibit Helicobacter pylori in vitro and in vivo: support for ethnomedical use,” Ethnobotany Research & Applications, vol. 4, pp. 159–165, 2006.
  44. E. Pattaratanawadee, C. Rachtanapun, P. Wanchaitanawong, and W. Mahakarnchanakul, “Antimicrobial activity of spice extracts against pathogenic and spoilage microorganisms,” Kasetsart Journal, vol. 40, pp. 159–165, 2006.
  45. Y. Rukayadi, K. Lee, S. Han, D. Yong, and J. K. Hwang, “In vitro activities of panduratin A against clinical Staphylococcus strains,” Antimicrobial Agents and Chemotherapy, vol. 53, no. 10, pp. 4529–4532, 2009. View at Publisher · View at Google Scholar · View at Scopus
  46. N. Sawangjaroen, S. Phongpaichit, S. Subhadhirasakul, M. Visutthi, N. Srisuwan, and N. Thammapalerd, “The anti-amoebic activity of some medicinal plants used by AIDS patients in southern Thailand,” Parasitology Research, vol. 98, no. 6, pp. 588–592, 2006. View at Publisher · View at Google Scholar · View at Scopus
  47. N. Sawangjaroen, S. Subhadhirasakul, S. Phongpaichit, C. Siripanth, K. Jamjaroen, and K. Sawangjaroen, “The in vitro anti-giardial activity of extracts from plants that are used for self-medication by AIDS patients in southern Thailand,” Parasitology Research, vol. 95, no. 1, pp. 17–21, 2005. View at Publisher · View at Google Scholar · View at Scopus
  48. S. Limsuwan and S. P. Voravuthikunchai, “Boesenbergia pandurata (Roxb.) Schltr., Eleutherine americana Merr. and Rhodomyrtus tomentosa (Aiton) Hassk. as antibiofilm producing and antiquorum sensing in Streptococcus pyogenes,” FEMS Immunology and Medical Microbiology, vol. 53, no. 3, pp. 429–436, 2008. View at Publisher · View at Google Scholar · View at Scopus
  49. Yanti, Y. Rukayadi, K. H. Lee, and J. K. Hwang, “Activity of panduratin A isolated from Kaempferia pandurata Roxb. against multi-species oral biofilms in vitro,” Journal of Oral Science, vol. 51, no. 1, pp. 87–95, 2009. View at Publisher · View at Google Scholar · View at Scopus
  50. Yanti and J. K. Hwang, “Suppressive effect of ethanolic Kaempferia pandurata Roxb. extract on matrix metalloproteinase-2 expression in Porphyromonas gingivalis-treated human gingival fibroblasts in vitro,” Journal of Oral Science, vol. 52, no. 4, pp. 583–591, 2010. View at Publisher · View at Google Scholar
  51. N. Cheeptham and G. H. N. Towers, “Light-mediated activities of some Thai medicinal plant teas,” Fitoterapia, vol. 73, no. 7-8, pp. 651–662, 2002. View at Publisher · View at Google Scholar · View at Scopus
  52. S. Taweechaisupapong, S. Singhara, P. Lertsatitthanakorn, and W. Khunkitti, “Antimicrobial effects of Boesenbergia pandurata and Piper sarmentosum leaf extracts on planktonic cells and biofilm of oral pathogens,” Pakistan Journal of Pharmaceutical Sciences, vol. 23, no. 2, pp. 224–231, 2010. View at Scopus
  53. J. K. Hwang, J. S. Shim, and J. Y. Chung, “Anticariogenic activity of some tropical medicinal plants against Streptococcus mutans,” Fitoterapia, vol. 75, no. 6, pp. 596–598, 2004. View at Publisher · View at Google Scholar · View at Scopus
  54. J. K. Hwang, J. Y. Chung, N. I. Baek, and J. H. Park, “Isopanduratin a from Kaempferia pandurata as an active antibacterial agent against cariogenic Streptococcus mutans,” International Journal of Antimicrobial Agents, vol. 23, no. 4, pp. 377–381, 2004. View at Publisher · View at Google Scholar · View at Scopus
  55. T. Sroisiri and T. Boonyanit, “Inhibition of candida adhesion to denture acrylic by Boesenbergia pandurata,” Asian Pacific Journal of Tropical Medicine, vol. 3, no. 4, pp. 272–275, 2010. View at Publisher · View at Google Scholar · View at Scopus
  56. J. K. Hwang, S. Y. Cho, S. W. Cho, et al., “Anti-halitosis composition comprising panduratin derivatives,” WIPO Patent Application WO/2010/041777, 2010.
  57. Y. Rukayadi, S. Han, D. Yong, and J. K. Hwang, “In vitro antibacterial activity of panduratin a against enterococci clinical isolates,” Biological and Pharmaceutical Bulletin, vol. 33, no. 9, pp. 1489–1493, 2010. View at Publisher · View at Google Scholar · View at Scopus
  58. J. H. Sohn, K. L. Han, S. H. Lee, and J. K. Hwang, “Protective effects of panduratin A against oxidative damage of tert-butylhydroperoxide in human HepG2 cells,” Biological and Pharmaceutical Bulletin, vol. 28, no. 6, pp. 1083–1086, 2005. View at Publisher · View at Google Scholar · View at Scopus
  59. S. I. Abdelwahab, S. Mohan, M. A. Abdulla et al., “The methanolic extract of Boesenbergia rotunda (L.) Mansf. and its major compound pinostrobin induces anti-ulcerogenic property in vivo: possible involvement of indirect antioxidant action,” Journal of Ethnopharmacology, vol. 137, pp. 963–970, 2011. View at Publisher · View at Google Scholar · View at Scopus
  60. D. Kim, M. S. Lee, K. Jo, K. E. Lee, and J. K. Hwang, “Therapeutic potential of panduratin A, LKB1-dependent AMP-activated protein kinase stimulator, with activation of PPARα/δ for the treatment of obesity,” Diabetes, Obesity and Metabolism, vol. 13, no. 7, pp. 584–593, 2011. View at Publisher · View at Google Scholar · View at Scopus
  61. C. Kirana, I. R. Record, G. H. McIntosh, and G. P. Jones, “Screening for antitumor activity of 11 species of Indonesian zingiberaceae using human MCF-7 and HT-29 cancer cells,” Pharmaceutical Biology, vol. 41, no. 4, pp. 271–276, 2003. View at Publisher · View at Google Scholar · View at Scopus
  62. C. Kirana, G. P. Jones, I. R. Record, and G. H. McIntosh, “Anticancer properties of panduratin A isolated from Boesenbergia pandurata (Zingiberaceae),” Journal of Natural Medicines, vol. 61, no. 2, pp. 131–137, 2007. View at Publisher · View at Google Scholar · View at Scopus
  63. L. J. Jing, M. Mohamed, A. Rahmat, and M. F. A. Bakar, “Phytochemicals, antioxidant properties and anticancer investigations of the different parts of several gingers species (Boesenbergia rotunda, Boesenbergia pulchella var attenuata and Boesenbergia armeniaca),” Journal of Medicinal Plant Research, vol. 4, no. 1, pp. 027–032, 2010. View at Scopus
  64. J. M. Yun, M. H. Kweon, H. Kwon, J. K. Hwang, and H. Mukhtar, “Induction of apoptosis and cell cycle arrest by a chalcone panduratin A isolated from Kaempferia pandurata in androgen-independent human prostate cancer cells PC3 and DU145,” Carcinogenesis, vol. 27, no. 7, pp. 1454–1464, 2006. View at Publisher · View at Google Scholar · View at Scopus
  65. S. C. Cheah, D. R. Appleton, S. T. Lee, M. L. Lam, A. H. A. Hadi, and M. R. Mustafa, “Panduratin a inhibits the growth of A549 cells through induction of apoptosis and inhibition of NF-KappaB translocation,” Molecules, vol. 16, no. 3, pp. 2583–2598, 2011. View at Publisher · View at Google Scholar · View at Scopus
  66. S. Phongpaichit, S. Subhadhirasakul, and C. Wattanapiromsakul, “Antifungal activities of extracts from Thai medicinal plants against opportunistic fungal pathogens associated with AIDS patients,” Mycoses, vol. 48, no. 5, pp. 333–338, 2005. View at Publisher · View at Google Scholar · View at Scopus
  67. W. Wangkangwan, S. Boonkerd, W. Chavasiri et al., “Pinostrobin from Boesenbergia pandurata Is an inhibitor of Ca2+-Signal-Mediated Cell-Cycle regulation in the Yeast Saccharomyces cerevisiae,” Bioscience, Biotechnology and Biochemistry, vol. 73, no. 7, pp. 1679–1682, 2009. View at Publisher · View at Google Scholar · View at Scopus
  68. N. Chungsamarnyart, T. Sirinarumitr, W. Chumsing, and W. Wajjawalku, “In vitro study of antiviral activity of plant crude-extracts against the foot and mouth disease virus,” Kasetsart Journal, vol. 41, pp. 97–103, 2007.
  69. S. Tewtrakul, S. Subhadhirasakul, C. Karalai, C. Ponglimanont, and S. Cheenpracha, “Anti-inflammatory effects of compounds from Kaempferia parviflora and Boesenbergia pandurata,” Food Chemistry, vol. 115, no. 2, pp. 534–538, 2009. View at Publisher · View at Google Scholar · View at Scopus
  70. S. Boonjaraspinyo, T. Boonmars, C. Aromdee, and B. Kaewsamut, “Effect of fingerroot on reducing inflammatory cells in hamster infected with Opisthorchis viverrini and N-nitrosodimethylamine administration,” Parasitology Research, vol. 106, no. 6, pp. 1485–1489, 2010. View at Publisher · View at Google Scholar · View at Scopus
  71. I. Jantan, I. A. A. Rafi, and J. Jalil, “Platelet-activating factor (PAF) receptor-binding antagonist activity of Malaysian medicinal plants,” Phytomedicine, vol. 12, no. 1-2, pp. 88–92, 2005. View at Publisher · View at Google Scholar · View at Scopus
  72. P. E. Kolenbrander, R. N. Andersen, D. S. Blehert, P. G. Egland, J. S. Foster, and R. J. Palmer, “Communication among oral bacteria,” Microbiology and Molecular Biology Reviews, vol. 66, no. 3, pp. 486–505, 2002. View at Publisher · View at Google Scholar · View at Scopus
  73. L. J. Jing, M. F. Abu Bakar, M. Mohamed, and A. Rahmat, “Effects of selected Boesenbergia species on the proliferation of several cancer cell lines,” Journal of Pharmacology and Toxicology, vol. 6, no. 3, pp. 272–282, 2011. View at Publisher · View at Google Scholar
  74. T. S. Kiat, R. Pippen, R. Yusof, H. Ibrahim, N. Khalid, and N. A. Rahman, “Inhibitory activity of cyclohexenyl chalcone derivatives and flavonoids of fingerroot, Boesenbergia rotunda (L.), towards dengue-2 virus NS3 protease,” Bioorganic and Medicinal Chemistry Letters, vol. 16, no. 12, pp. 3337–3340, 2006. View at Publisher · View at Google Scholar · View at Scopus
  75. A. A. Mahmood, A. A. Mariod, S. I. Abdelwahab, S. Ismail, and F. Al-Bayaty, “Potential activity of ethanolic extract of Boesenbergia rotunda (L.) rhizomes extract in accelerating wound healing in rats,” Journal of Medicinal Plants Research, vol. 4, no. 15, pp. 1570–1576, 2010.
  76. S. R. Rao and G. A. Ravishankar, “Plant cell cultures: chemical factories of secondary metabolites,” Biotechnology Advances, vol. 20, no. 2, pp. 101–153, 2002. View at Publisher · View at Google Scholar · View at Scopus
  77. S. K. Tan, R. Pippen, R. Yusof, H. Ibrahim, N. Rahman, and N. Khalid, “Simple one-medium formulation regeneration of fingerroot [Boesenbergia rotunda (L.) Mansf. Kulturpfl.] via somatic embryogenesis,” In Vitro Cellular and Developmental Biology, vol. 41, no. 6, pp. 757–761, 2005. View at Publisher · View at Google Scholar · View at Scopus
  78. T. Murashige and F. Skoog, “A revised medium for rapid growth and bio assays with tobacco tissue cultures,” Physiologia Plantarum, vol. 15, no. 3, pp. 473–497, 1962.
  79. N. A. Yusuf, M. M. S. Annuar, and N. Khalid, “Rapid micropropagation of Boesenbergia rotunda (L.) Mansf. Kulturpfl. (a valuable medicinal plant) from shoot bud explants,” African Journal of Biotechnology, vol. 10, no. 7, pp. 1194–1199, 2011. View at Scopus
  80. B. Tepe and A. Sokmen, “Production and optimisation of rosmarinic acid by Satureja hortensis L. callus cultures,” Natural Product Research, vol. 21, no. 13, pp. 1133–1144, 2007. View at Publisher · View at Google Scholar · View at Scopus
  81. P. J. Weathers, M. J. Towler, and J. Xu, “Bench to batch: advances in plant cell culture for producing useful products,” Applied Microbiology and Biotechnology, vol. 85, no. 5, pp. 1339–1351, 2010. View at Publisher · View at Google Scholar · View at Scopus
  82. A. Aharoni and G. Galili, “Metabolic engineering of the plant primary-secondary metabolism interface,” Current Opinion in Biotechnology, vol. 22, no. 2, pp. 239–244, 2011. View at Publisher · View at Google Scholar · View at Scopus
  83. J. Zhao, L. C. Davis, and R. Verpoorte, “Elicitor signal transduction leading to production of plant secondary metabolites,” Biotechnology Advances, vol. 23, no. 4, pp. 283–333, 2005. View at Publisher · View at Google Scholar · View at Scopus
  84. J. L. Zhao, L. G. Zhou, and J. Y. Wu, “Effects of biotic and abiotic elicitors on cell growth and tanshinone accumulation in Salvia miltiorrhiza cell cultures,” Applied Microbiology and Biotechnology, vol. 87, no. 1, pp. 137–144, 2010. View at Publisher · View at Google Scholar · View at Scopus
  85. C. H. Zhang, P. S. Fevereiro, G. He, and Z. Chen, “Enhanced paclitaxel productivity and release capacity of Taxus chinensis cell suspension cultures adapted to chitosan,” Plant Science, vol. 172, no. 1, pp. 158–163, 2007. View at Publisher · View at Google Scholar · View at Scopus
  86. A. Gueven and D. Knorr, “Isoflavonoid production by soy plant callus suspension culture,” Journal of Food Engineering, vol. 103, no. 3, pp. 237–243, 2011. View at Publisher · View at Google Scholar · View at Scopus
  87. E. Kaimoyo, M. A. Farag, L. W. Sumner, C. Wasmann, J. L. Cuello, and H. VanEtten, “Sub-lethal levels of electric current elicit the biosynthesis of plant secondary metabolites,” Biotechnology Progress, vol. 24, no. 2, pp. 377–384, 2008. View at Publisher · View at Google Scholar · View at Scopus
  88. Z. Cai, H. Riedel, N. M. M. T. Saw et al., “Effects of elicitors and high hydrostatic pressure on secondary metabolism of Vitis vinifera suspension culture,” Process Biochemistry, vol. 46, no. 7, pp. 1411–1416, 2011. View at Publisher · View at Google Scholar · View at Scopus
  89. Z. Cai, A. Kastell, D. Knorr, and I. Smetanska, “Exudation: an expanding technique for continuous production and release of secondary metabolites from plant cell suspension and hairy root cultures,” Plant Cell Reports, vol. 31, no. 3, pp. 461–477, 2012.
  90. D. Donnez, K. H. Kim, S. Antoine et al., “Bioproduction of resveratrol and viniferins by an elicited grapevine cell culture in a 2 L stirred bioreactor,” Process Biochemistry, vol. 46, no. 5, pp. 1056–1062, 2011. View at Publisher · View at Google Scholar · View at Scopus
  91. J. P. J. Marais, D. Ferreira, and D. Slade, “Stereoselective synthesis of monomeric flavonoids,” Phytochemistry, vol. 66, no. 18, pp. 2145–2176, 2005. View at Publisher · View at Google Scholar · View at Scopus
  92. K. J. Hodgetts, “Inter- and intramolecular Mitsunobu reaction based approaches to 2-substituted chromans and chroman-4-ones,” Tetrahedron, vol. 61, no. 28, pp. 6860–6870, 2005. View at Publisher · View at Google Scholar · View at Scopus
  93. T. Korenaga, K. Hayashi, Y. Akaki, R. Maenishi, and T. Sakai, “Highly enantioselective and efficient synthesis of flavanones including pinostrobin through the rhodium-catalyzed asymmetric 1,4-addition,” Organic Letters, vol. 13, no. 8, pp. 2022–2025, 2011. View at Publisher · View at Google Scholar · View at Scopus
  94. C. F. Chee, I. Abdullah, M. J. C. Buckle, and N. A. Rahman, “An efficient synthesis of (±)-panduratin A and (±)-isopanduratin A, inhibitors of dengue-2 viral activity,” Tetrahedron Letters, vol. 51, no. 3, pp. 495–498, 2010. View at Publisher · View at Google Scholar · View at Scopus
  95. C. Backhauss and J. Krieglstein, “Extract of kava (Piper methysticum) and its methysticin constituents protect brain tissue against ischemic damage in rodents,” European Journal of Pharmacology, vol. 215, no. 2-3, pp. 265–269, 1992. View at Publisher · View at Google Scholar · View at Scopus
  96. A. R. Bilia, S. Gallori, and F. F. Vincieri, “Kava-kava and anxiety: growing knowledge about the efficacy and safety,” Life Sciences, vol. 70, no. 22, pp. 2581–2597, 2002. View at Publisher · View at Google Scholar · View at Scopus
  97. J. Gleitz, J. Friese, A. Beile, A. Ameri, and T. Peters, “Anticonvulsive action of (±)-kavain estimated from its properties on stimulated synaptosomes and Na+ channel receptor sites,” European Journal of Pharmacology, vol. 315, no. 1, pp. 89–97, 1996. View at Publisher · View at Google Scholar · View at Scopus
  98. R. Hansel, D. Weiß, and B. Schmidt, “Fungistatische wirkung der kawadroge und ihrer inhaltsstoffe,” Planta Medica, vol. 14, no. 1, pp. 1–9, 1966.
  99. J. Keledjian, P. H. Duffield, D. D. Jamieson, R. O. Lidgard, and A. M. Duffield, “Uptake into mouse brain of four compounds present in the psychoactive beverage kava,” Journal of Pharmaceutical Sciences, vol. 77, no. 12, pp. 1003–1006, 1988. View at Scopus
  100. N. Schmidt and B. Ferger, “Neuroprotective effects of (+/-)-kavain in the MPTP mouse model of Parkinson's disease,” Synapse, vol. 40, no. 1, pp. 47–54, 2001.
  101. U. Seitz, A. Ameri, H. Pelzer, J. Gleitz, and T. Peters, “Relaxation of evoked contractile activity of isolated guinea-pig ileum by (±)-kavain,” Planta Medica, vol. 63, no. 4, pp. 303–306, 1997. View at Publisher · View at Google Scholar · View at Scopus
  102. Y. N. Singh, “Effects of kava on neuromuscular transmission and muscle contractility,” Journal of Ethnopharmacology, vol. 7, no. 3, pp. 267–276, 1983. View at Scopus
  103. Y. N. Singh and M. Blumentahl, “Kava: an overview,” Herbalgram, vol. 39, pp. 33–56, 1997.
  104. S. Castellino and J. J. Sims, “The total synthesis of (±) kawain via a hetero-diels-alder cycloaddition,” Tetrahedron Letters, vol. 25, no. 37, pp. 4059–4062, 1984. View at Publisher · View at Google Scholar · View at Scopus
  105. H. Du, D. Zhao, and K. Ding, “Enantioselective catalysis of the hetero-diels-alder reaction between Brassard's diene and aldehydes by hydrogen-bonding activation: a one-step synthesis of (S)-(+)-dihydrokawain,” Chemistry, vol. 10, no. 23, pp. 5964–5970, 2004. View at Publisher · View at Google Scholar · View at Scopus
  106. T. Feffstrup and P. M. Boll, “The preparation of 4-hydroxy-5, 6-dihydro-2-pyrones and their conversion to kawa-lactones as well as to other precursors of naturally occurring 2-pyrones,” Acta Chemica Scandinavica B, vol. 30, pp. 613–618, 1976.
  107. E. M. F. Fowler and H. B. Henbest, “Researches on acetylenic compounds. Part XXV. Synthesis of (±)-kawain,” Journal of the Chemical Society, pp. 3642–3652, 1950. View at Publisher · View at Google Scholar
  108. Z. H. Israili and E. E. Smissman, “Synthesis of kavain, dihydrokavain, and analogues,” Journal of Organic Chemistry, vol. 41, no. 26, pp. 4070–4074, 1976. View at Scopus
  109. T. Izawa and T. Mukaiyama, “Convenient method for the preparation of σ-hydroxy-β-ketoesters and 6-alkyl-5, 6-dihydro-4-hydroxy-2-pyrones. Application to the syntheses of kawain and hydrokawain,” Chemistry Letters, vol. 4, no. 2, pp. 161–164, 1975.
  110. A. Kamal, T. Krishnaji, and G. B. R. Khanna, “Chemoenzymatic synthesis of enantiomerically enriched kavalactones,” Tetrahedron Letters, vol. 47, no. 49, pp. 8657–8660, 2006. View at Publisher · View at Google Scholar · View at Scopus
  111. C. Piantadosi and V. G. Skulason, “Synthesis of some alpha,beta-unsaturated beta, delta-disubstituted,” Journal of Pharmaceutical Sciences, vol. 53, pp. 902–905, 1964. View at Scopus
  112. C. Pierres, P. George, L. Van Hijfte, J. B. Ducep, M. Hibert, and A. Mann, “Polymer-supported electron-rich diene for hetero Diels-Alder reactions,” Tetrahedron Letters, vol. 44, no. 18, pp. 3645–3647, 2003. View at Publisher · View at Google Scholar · View at Scopus
  113. J. D. Rosen, T. D. Nelson, M. A. Huffman, and J. M. McNamara, “A convenient synthesis of 3-aryl-δ-lactones,” Tetrahedron Letters, vol. 44, no. 2, pp. 365–368, 2003. View at Publisher · View at Google Scholar · View at Scopus
  114. G. Sabitha, K. Sudhakar, and J. S. Yadav, “Application of the Cosford cross-coupling protocol for the stereoselective synthesis of (R)-(+)-goniothalamin, (R)-(+)-kavain and (S)-(+)-7,8-dihydrokavain,” Tetrahedron Letters, vol. 47, no. 48, pp. 8599–8602, 2006. View at Publisher · View at Google Scholar · View at Scopus
  115. T. E. Smith, M. Djang, A. J. Velander, C. W. Downey, K. A. Carroll, and S. Van Alphen, “Versatile asymmetric synthesis of the kavalactones: first synthesis of (+)-kavain,” Organic Letters, vol. 6, no. 14, pp. 2317–2320, 2004. View at Publisher · View at Google Scholar · View at Scopus
  116. C. Spino, N. Mayes, and H. Desfossés, “Enantioselective synthesis of (+)- and (-)-dihydrokawain,” Tetrahedron Letters, vol. 37, no. 36, pp. 6503–6506, 1996. View at Publisher · View at Google Scholar · View at Scopus
  117. F. D. Wang and J. M. Yue, “Total synthesis of (R)-(+)-kavain via (MeCN)2PdCl 2-catalyzed isomerization of a cis double bond and sonochemical Blaise reaction,” Synlett, no. 13, pp. 2077–2079, 2005. View at Publisher · View at Google Scholar · View at Scopus
  118. P. A. Amaral, N. Gouault, M. L. Roch, V. L. Eifler-Lima, and M. David, “Towards synthesis of kavalactone derivatives,” Tetrahedron Letters, vol. 49, no. 47, pp. 6607–6609, 2008. View at Publisher · View at Google Scholar · View at Scopus
  119. P. Bañuelos, J. M. Garcia, E. Gómez-Bengpa et al., “(1R)-(+)-camphor and acetone derived α′-hydroxy enones in asymmetric diels-alder reaction: catalytic activation by Lewis and brønsted acids, substrate scope, applications in syntheses, and mechanistic studies,” Journal of Organic Chemistry, vol. 75, no. 5, pp. 1458–1473, 2010. View at Publisher · View at Google Scholar · View at Scopus
  120. R. Othman, T. S. Kiat, N. Khalid et al., “Docking of noncompetitive inhibitors into dengue virus type 2 protease: understanding the interactions with allosteric binding sites,” Journal of Chemical Information and Modeling, vol. 48, no. 8, pp. 1582–1591, 2008. View at Publisher · View at Google Scholar · View at Scopus
  121. S. B. Paul and S. Choudhury, “Molecular docking studies on the activity of naturally occurring pyranochalcones on the transcriptional regulator enzyme of Pseudomonas putida,” Open Access Bioinformatics, vol. 2, no. 1, pp. 61–66, 2010.
  122. N. Frimayanti, C. F. Chee, S. M. Zain, and N. A. Rahman, “Design of new competitive dengue Ns2b/Ns3 protease inhibitors-a computational approach,” International Journal of Molecular Sciences, vol. 12, no. 2, pp. 1089–1100, 2011. View at Publisher · View at Google Scholar · View at Scopus
  123. S. K. Tan, Flavonoids from Boesenbergia rotunda (L). Mansf.: chemistry, bioactivity and accumulation [thesis], Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia, 2005.
  124. T. E. Chong, F. G. Teck, and W. S. Ming, “Optimization of two-dimensional gel electrophoresis protocols for Boesenbergia rotundain vitro suspension culture,” Journal of Medicinal Plants Research, vol. 5, no. 16, pp. 3777–3780, 2011.