About this Journal Submit a Manuscript Table of Contents
Evidence-Based Complementary and Alternative Medicine
Volume 2012 (2012), Article ID 485262, 10 pages
http://dx.doi.org/10.1155/2012/485262
Research Article

Dual Roles of Quercetin in Platelets: Phosphoinositide-3-Kinase and MAP Kinases Inhibition, and cAMP-Dependent Vasodilator-Stimulated Phosphoprotein Stimulation

1Laboratory of Physiology & Cell Signaling, College of Veterinary Medicine, Kyungpook National University, Daegu 702-701, Republic of Korea
2Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Kyungpook National University, Daegu 702-701, Republic of Korea
3Department of Genetic Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea

Received 25 August 2012; Revised 29 October 2012; Accepted 30 October 2012

Academic Editor: Kashmira Nanji

Copyright © 2012 Won Jun Oh et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Garcia, T. M. Quinton, R. T. Dorsam, and S. P. Kunapuli, “Src family kinase-mediated and Erk-mediated thromboxane A2 generation are essential for VWF/GPIb-induced fibrinogen receptor activation in human platelets,” Blood, vol. 106, no. 10, pp. 3410–3414, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. N. E. Barrett, L. Holbrook, S. Jones et al., “Future innovations in anti-platelet therapies,” British Journal of Pharmacology, vol. 154, no. 5, pp. 918–939, 2008. View at Publisher · View at Google Scholar
  3. Z. Li, J. Ajdic, M. Eigenthaler, and X. Du, “A predominant role for cAMP-dependent protein kinase in the cGMP-induced phosphorylation of vasodilator-stimulated phosphoprotein and platelet inhibition in humans,” Blood, vol. 101, no. 11, pp. 4423–4429, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. S. S. Smyth, D. S. Woulfe, J. I. Weitz et al., “G-protein-coupled receptors as signaling targets for antiplatelet therapy,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 29, no. 4, pp. 449–457, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. D. Yacoub, J. F. Théorêt, L. Villeneuve et al., “Essential role of protein kinase Cδ in platelet signaling, αIIbβ3 activation, and thromboxane A2 release,” The Journal of Biological Chemistry, vol. 281, no. 40, pp. 30024–30035, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. J. Vallés, M. Teresa Santos, J. Aznar et al., “Platelet-erythrocyte interactions enhance αIIbβ3 integrin receptor activation and P-selectin expression during platelet recruitment: down-regulation by aspirin ex vivo,” Blood, vol. 99, no. 11, pp. 3978–3984, 2002. View at Publisher · View at Google Scholar · View at Scopus
  7. A. Zarbock, R. K. Polanowska-Grabowska, and K. Ley, “Platelet-neutrophil-interactions: linking hemostasis and inflammation,” Blood Reviews, vol. 21, no. 2, pp. 99–111, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. P. Libby, “Inflammatory mechanisms: the molecular basis of inflammation and disease,” Nutrition Reviews, vol. 65, no. s3, pp. S140–S146, 2007. View at Publisher · View at Google Scholar
  9. M. H. Pan, C. S. Lai, S. Dushenkov, and C. T. Ho, “Modulation of inflammatory genes by natural dietary bioactive compounds,” Journal of Agricultural and Food Chemistry, vol. 57, no. 11, pp. 4467–4477, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. W. M. Loke, J. M. Proudfoot, J. M. Hodgson et al., “Specific dietary polyphenols attenuate atherosclerosis in apolipoprotein e-knockout mice by alleviating inflammation and endothelial dysfunction,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 30, no. 4, pp. 749–757, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. R. R. Huxley and H. A. W. Neil, “The relation between dietary flavonol intake and coronary heart disease mortality: a meta-analysis of prospective cohort studies,” European Journal of Clinical Nutrition, vol. 57, no. 8, pp. 904–908, 2003. View at Publisher · View at Google Scholar
  12. J. M. Geleijnse, L. J. Launer, D. A. M. van der Kuip, A. Hofman, and J. C. M. Witteman, “Inverse association of tea and flavonoid intakes with incident myocardial infarction: the Rotterdam study,” American Journal of Clinical Nutrition, vol. 75, no. 5, pp. 880–886, 2002, http://ajcn.nutrition.org/content/75/5/880.abstract. View at Scopus
  13. P. Castilla, R. Echarri, A. Dávalos et al., “Concentrated red grape juice exerts antioxidant, hypolipidemic, and antiinflammatory effects in both hemodialysis patients and healthy subjects,” American Journal of Clinical Nutrition, vol. 84, no. 1, pp. 252–262, 2006, http://ajcn.nutrition.org/content/84/1/252.abstract. View at Scopus
  14. T. L. Zern, R. J. Wood, C. Greene et al., “Grape polyphenols exert a cardioprotective effect in pre- and postmenopausal women by lowering plasma lipids and reducing oxidative stress,” Journal of Nutrition, vol. 135, no. 8, pp. 1911–1917, 2005, http://jn.nutrition.org/content/135/8/1911.abstract. View at Scopus
  15. M. Comalada, I. Ballester, E. Bailón et al., “Inhibition of pro-inflammatory markers in primary bone marrow-derived mouse macrophages by naturally occurring flavonoids: analysis of the structure-activity relationship,” Biochemical Pharmacology, vol. 72, no. 8, pp. 1010–1021, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Russo, C. Spagnuolo, I. Tedesco, S. Bilotto, and G. L. Russo, “The flavonoid quercetin in disease prevention and therapy: facts and fancies,” Biochemical Pharmacology, vol. 83, no. 1, pp. 6–15, 2012. View at Publisher · View at Google Scholar
  17. T. K. Kao, Y. C. Ou, S. L. Raung, C. Y. Lai, S. L. Liao, and C. J. Chen, “Inhibition of nitric oxide production by quercetin in endotoxin/cytokine-stimulated microglia,” Life Sciences, vol. 86, no. 9-10, pp. 315–321, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. J. Schaeffer and M. P. Blaustein, “Platelet free calcium concentrations measured with fura-2 are influenced by the transmembrane sodium gradient,” Cell Calcium, vol. 10, no. 2, pp. 101–113, 1989. View at Scopus
  19. A. Aszódi, A. Pfeifer, M. Ahmad et al., “The vasodilator-stimulated phosphoprotein (VASP) is involved in cGMP- and cAMP-mediated inhibition of agonist-induced platelet aggregation, but is dispensable for smooth muscle function,” The EMBO Journal, vol. 18, no. 1, pp. 37–48, 1999. View at Publisher · View at Google Scholar · View at Scopus
  20. D. A. Calderwood, “Integrin activation,” Journal of Cell Science, vol. 117, pp. 657–666, 2004. View at Publisher · View at Google Scholar
  21. Z. M. Ruggeri, “Platelets in atherothrombosis,” Nature Medicine, vol. 8, no. 11, pp. 1227–1234, 2002. View at Publisher · View at Google Scholar
  22. P. Flevaris, Z. Li, G. Zhang, Y. Zheng, J. Liu, and X. Du, “Two distinct roles of mitogen-activated protein kinases in platelets and a novel Rac1-MAPK-dependent integrin outside-in retractile signaling pathway,” Blood, vol. 113, no. 4, pp. 893–901, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. J. M. Gibbins, “Platelet adhesion signalling and the regulation of thrombus formation,” Journal of Cell Science, vol. 117, no. 16, pp. 3415–3425, 2004. View at Publisher · View at Google Scholar
  24. P. Knekt, J. Kumpulainen, R. Järvinen et al., “Flavonoid intake and risk of chronic diseases,” American Journal of Clinical Nutrition, vol. 76, no. 3, pp. 560–568, 2002, http://www.ajcn.org/cgi/content/abstract/76/3/560.
  25. A. Annapurna, C. S. Reddy, R. B. Akondi, and S. R. C. Rao, “Cardioprotective actions of two bioflavonoids, quercetin and rutin, in experimental myocardial infarction in both normal and streptozotocin-induced type I diabetic rats,” Journal of Pharmacy and Pharmacology, vol. 61, no. 10, pp. 1365–1374, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. P. Pignatelli, F. M. Pulcinelli, A. Celestini et al., “The flavonoids quercetin and catechin synergistically inhibit platelet function by antagonizing the intracellular production of hydrogen peroxide,” American Journal of Clinical Nutrition, vol. 72, no. 5, pp. 1150–1155, 2000. View at Scopus
  27. G. P. Hubbard, J. M. Stevens, M. Cicmil et al., “Quercetin inhibits collagen-stimulated platelet activation through inhibition of multiple components of the glycoprotein VI signaling pathway,” Journal of Thrombosis and Haemostasis, vol. 1, no. 5, pp. 1079–1088, 2003. View at Publisher · View at Google Scholar
  28. A. D. Santo, A. Mezzetti, E. Napoleone et al., “Resveratrol and quercetin down-regulate tissue factor expression by human stimulated vascular cells,” Journal of Thrombosis and Haemostasis, vol. 1, no. 5, pp. 1089–1095, 2003. View at Publisher · View at Google Scholar
  29. J. V. Formica, “Review of the biology of quercetin and related bioflavonoids,” Food and Chemical Toxicology, vol. 33, no. 12, pp. 1061–1080, 1995. View at Publisher · View at Google Scholar · View at Scopus
  30. J. A. Guerrero, M. L. Lozano, J. Castillo, O. Benavente-García, V. Vicente, and J. Rivera, “Flavonoids inhibit platelet function through binding to the thromboxane A2 receptor,” Journal of Thrombosis and Haemostasis, vol. 3, no. 2, pp. 369–376, 2005. View at Publisher · View at Google Scholar
  31. J. A. Guerrero, L. Navarro-Nuñez, M. L. Lozano et al., “Flavonoids inhibit the platelet TxA2 signalling pathway and antagonize TxA2 receptors (TP) in platelets and smooth muscle cells,” British Journal of Clinical Pharmacology, vol. 64, no. 2, pp. 133–144, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. E. H. Walker, M. E. Pacold, O. Perisic et al., “Structural determinants of phosphoinositide 3-kinase inhibition by wortmannin, LY294002, quercetin, myricetin, and staurosporine,” Molecular Cell, vol. 6, no. 4, pp. 909–919, 2000. View at Publisher · View at Google Scholar · View at Scopus
  33. L. Gamet-Payrastre, S. Manenti, M. P. Gratacap, J. Tulliez, H. Chap, and B. Payrastre, “Flavonoids and the inhibition of PKC and PI 3-kinase,” General Pharmacology, vol. 32, no. 3, pp. 279–286, 1999. View at Publisher · View at Google Scholar · View at Scopus
  34. C. J. Vlahos, W. F. Matter, K. Y. Hui, and R. F. Brown, “A specific inhibitor of phosphatidylinositol 3-kinase, 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY294002),” The Journal of Biological Chemistry, vol. 269, no. 7, pp. 5241–5248, 1994, http://www.jbc.org/content/269/7/5241.abstract. View at Scopus
  35. B. Nieswandt, D. Varga-Szabo, and M. Elvers, “Integrins in platelet activation,” Journal of Thrombosis and Haemostasis, vol. 7, no. 1, pp. 206–209, 2009. View at Publisher · View at Google Scholar
  36. F. Morello, A. Perino, and E. Hirsch, “Phosphoinositide 3-kinase signalling in the vascular system,” Cardiovascular Research, vol. 82, no. 2, pp. 261–271, 2009. View at Publisher · View at Google Scholar
  37. J. Chen, S. De, D. S. Damron, W. S. Chen, N. Hay, and T. V. Byzova, “Impaired platelet responses to thrombin and collagen in AKT-1-deficient mice,” Blood, vol. 104, no. 6, pp. 1703–1710, 2004. View at Publisher · View at Google Scholar · View at Scopus
  38. H. Kariyazono, K. Nakamura, T. Shinkawa, T. Yamaguchi, R. Sakata, and K. Yamada, “Inhibition of platelet aggregation and the release of P-selectin from platelets by cilostazol,” Thrombosis Research, vol. 101, no. 6, pp. 445–453, 2001. View at Publisher · View at Google Scholar
  39. T. Sudo, H. Ito, and Y. Kimura, “Phosphorylation of the vasodilator-stimulated phosphoprotein (VASP) by the anti-platelet drug, cilostazol, in platelets,” Platelets, vol. 14, no. 6, pp. 381–390, 2003. View at Publisher · View at Google Scholar · View at Scopus
  40. T. Kitamura, Y. Kitamura, S. Kuroda et al., “Insulin-induced phosphorylation and activation of cyclic nucleotide phosphodiesterase 3B by the serine-threonine kinase Akt,” Molecular and Cellular Biology, vol. 19, no. 9, pp. 6286–6296, 1999, http://mcb.asm.org/cgi/content/abstract/19/9/6286. View at Scopus
  41. W. Zhang and R. W. Colman, “Thrombin regulates intracellular cyclic AMP concentration in human platelets through phosphorylation/activation of phosphodiesterase 3A,” Blood, vol. 110, no. 5, pp. 1475–1482, 2007. View at Publisher · View at Google Scholar · View at Scopus
  42. H. Hayashi and T. Sudo, “Effects of the cAMP-elevating agents cilostamide, cilostazol and forskolin on the phosphorylation of Akt and GSK-3β in platelets,” Thrombosis and Haemostasis, vol. 102, no. 2, pp. 327–335, 2009. View at Publisher · View at Google Scholar · View at Scopus
  43. E. C. G. Jackson and A. McNicol, “Cyclic nucleotides inhibit MAP kinase activity in low-dose collagen-stimulated platelets,” Thrombosis Research, vol. 125, no. 2, pp. 147–151, 2010. View at Publisher · View at Google Scholar
  44. S. Beppu, Y. Nakajima, M. Shibasaki et al., “Phosphodiesterase 3 inhibition reduces platelet activation and monocyte tissue factor expression in knee arthroplasty patients,” Anesthesiology, vol. 111, no. 6, pp. 1227–1237, 2009. View at Publisher · View at Google Scholar
  45. H. S. Lee, S. D. Kim, W. M. Lee et al., “A noble function of BAY 11-7082: inhibition of platelet aggregation mediated by an elevated cAMP-induced VASP, and decreased ERK2/JNK1 phosphorylations,” European Journal of Pharmacology, vol. 627, no. 1–3, pp. 85–91, 2010. View at Publisher · View at Google Scholar
  46. M. Endale, W. M. Lee, S. M. Kamruzzaman et al., “Ginsenoside-Rp1 inhibits platelet activation and thrombus formation via impaired glycoprotein VI signalling pathway, tyrosine phosphorylation and MAPK activation,” British Journal of Pharmacology, vol. 167, no. 1, pp. 109–127, 2012. View at Publisher · View at Google Scholar
  47. S. Roger, M. Pawlowski, A. Habib, M. Jandrot-Perrus, J. P. Rosa, and M. Bryckaert, “Costimulation of the Gi-coupled ADP receptor and the Gq-coupled TXA 2 receptor is required for ERK2 activation in collagen-induced platelet aggregation,” FEBS Letters, vol. 556, no. 1–3, pp. 227–235, 2004. View at Publisher · View at Google Scholar · View at Scopus
  48. K. Fälker, D. Lange, and P. Presek, “ADP secretion and subsequent P2Y12 receptor signalling play a crucial role in thrombin-induced ERK2 activation in human platelets,” Thrombosis and Haemostasis, vol. 92, no. 1, pp. 114–123, 2004. View at Scopus
  49. A. Kauskot, F. Adam, A. Mazharian et al., “Involvement of the mitogen-activated protein kinase c-Jun NH 2-terminal kinase 1 in thrombus formation,” The Journal of Biological Chemistry, vol. 282, no. 44, pp. 31990–31999, 2007. View at Publisher · View at Google Scholar · View at Scopus
  50. A. Mazharian, S. Roger, P. Maurice et al., “Differential involvement of ERK2 and p38 in platelet adhesion to collagen,” The Journal of Biological Chemistry, vol. 280, no. 28, pp. 26002–26010, 2005. View at Publisher · View at Google Scholar · View at Scopus
  51. R. M. Kramer, E. F. Roberts, B. A. Strifler, and E. M. Johnstone, “Thrombin induces activation of p38 MAP kinase in human platelets,” The Journal of Biological Chemistry, vol. 270, no. 46, pp. 27395–27398, 1995. View at Publisher · View at Google Scholar · View at Scopus
  52. A. Kuliopulos, R. Mohanlal, and L. Covic, “Effect of selective inhibition of the p38 MAP kinase pathway on platelet aggregation,” Thrombosis and Haemostasis, vol. 92, no. 6, pp. 1387–1393, 2004. View at Publisher · View at Google Scholar · View at Scopus
  53. F. Adam, A. Kauskot, J. P. Rosa, and M. Bryckaert, “Mitogen-activated protein kinases in hemostasis and thrombosis,” Journal of Thrombosis and Haemostasis, vol. 6, no. 12, pp. 2007–2016, 2008. View at Publisher · View at Google Scholar · View at Scopus
  54. S. R. Steinhubl and D. J. Moliterno, “The role of the platelet in the pathogenesis of atherothrombosis,” American Journal of Cardiovascular Drugs, vol. 5, no. 6, pp. 399–408, 2005. View at Publisher · View at Google Scholar