About this Journal Submit a Manuscript Table of Contents
Evidence-Based Complementary and Alternative Medicine
Volume 2012 (2012), Article ID 491027, 6 pages
http://dx.doi.org/10.1155/2012/491027
Research Article

Evaluation of Topical Tocopherol Cream on Cutaneous Wound Healing in Streptozotocin-Induced Diabetic Rats

1Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia
2Faculty of Medicine, Cyberjaya University College of Medical Sciences, 63000 Cyberjaya, Malaysia
3Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia

Received 28 March 2012; Revised 13 September 2012; Accepted 13 September 2012

Academic Editor: Shrikant Anant

Copyright © 2012 Teoh Seong Lin et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. Thakur, N. Jain, R. Pathak, and S. S. Sandhu, “Practices in wound healing studies of plants,” Evidence Based Complementary and Alternative Medicine, vol. 2011, Article ID 438056, 17 pages, 2011.
  2. S. L. Teoh, A. A. Latiff, and S. Das, “The effect of topical extract of Momordica charantia (bitter gourd) on wound healing in nondiabetic rats and in rats with diabetes induced by streptozotocin,” Clinical and Experimental Dermatology, vol. 34, no. 7, pp. 815–822, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. A. K. Deodhar and R. E. Rana, “Surgical physiology of wound healing : a review,” Journal of Postgraduate Medicine, vol. 43, no. 2, pp. 52–56, 1997. View at Scopus
  4. J. Majtan, “Methylglyoxal—a potential risk factor of manuka honey in healing of diabetic ulcers,” Evidence-based Complementary and Alternative Medicine, vol. 2011, Article ID 295494, 5 pages, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. D. Foschi, E. Trabucchi, M. Musazzi et al., “The effects of oxygen free radicals on wound healing,” International Journal of Tissue Reactions, vol. 10, no. 6, pp. 373–379, 1988. View at Scopus
  6. W. M. Ringsdorf and E. Cheraskin, “Vitamin C and human wound healing,” Oral Surgery Oral Medicine and Oral Pathology, vol. 53, no. 3, pp. 231–236, 1982. View at Scopus
  7. E. Seifter, G. Rettura, J. Padawer, F. Stratford, D. Kambosos, and S. M. Levenson, “Impaired wound healing in streptozotocin diabetes. Prevention by supplemental vitamin A,” Annals of Surgery, vol. 194, no. 1, pp. 42–50, 1981. View at Scopus
  8. M. F. Trevisani, M. A. Ricci, J. T. Tolland, and W. C. Beck, “Effect of vitamin A and zinc on wound healing in steroid-treated mice,” Current Surgery, vol. 44, no. 5, pp. 390–393, 1987. View at Scopus
  9. M. Haws, R. E. Brown, H. Suchy, and A. Roth, “Vitamin A-soaked gelfoam sponges and wound healing in steroid-treated animals,” Annals of Plastic Surgery, vol. 32, no. 4, pp. 418–422, 1994. View at Scopus
  10. J. Weinzweig, S. M. Levenson, G. Rettura et al., “Supplemental vitamin A prevents the tumor-induced defect in wound healing,” Annals of Surgery, vol. 211, no. 3, pp. 269–276, 1990. View at Scopus
  11. A. H. Noor Aini, I. Illyana, W. N. Wan Zurinah, M. T. Gapor, and M. Musalmah, “Relationship between antioxidant enzymes activity with wound closure and effects of palm vitamin E supplementation during aging,” Malaysian Journal of Biochemistry and Molecular Biology, vol. 8, pp. 59–62, 2003.
  12. M. Musalmah, M. Y. Nizrana, A. H. Fairuz et al., “Comparative effects of palm vitamin E and α-tocopherol on healing and wound tissue antioxidant enzyme levels in diabetic rats,” Lipids, vol. 40, no. 6, pp. 575–580, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Galeano, V. Torre, B. Deodato et al., “Raxofelast, a hydrophilic vitamin E-like antioxidant, stimulates wound healing in genetically diabetic mice,” Surgery, vol. 129, no. 4, pp. 467–477, 2001. View at Publisher · View at Google Scholar · View at Scopus
  14. D. Gopinath, M. R. Ahmed, K. Gomathi, K. Chitra, P. K. Sehgal, and R. Jayakumar, “Dermal wound healing processes with curcumin incorporated collagen films,” Biomaterials, vol. 25, no. 10, pp. 1911–1917, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. M. M. Bradford, “A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding,” Analytical Biochemistry, vol. 72, no. 1-2, pp. 248–254, 1976. View at Scopus
  16. J. J. Thiele, S. N. Hsieh, and S. Ekanayake-Mudiyanselage, “Vitamin E: critical review of its current use in cosmetic and clinical dermatology,” Dermatologic Surgery, vol. 31, no. 7, part 2, pp. 805–813, 2005. View at Scopus
  17. Y. Yoshida, E. Niki, and N. Noguchi, “Comparative study on the action of tocopherols and tocotrienols as antioxidant: chemical and physical effects,” Chemistry and Physics of Lipids, vol. 123, no. 1, pp. 63–75, 2003. View at Publisher · View at Google Scholar · View at Scopus
  18. S. L. Teoh, A. A. Latiff, and S. Das, “A histological study of the structural changes in the liver of streptozotocin-induced diabetic rats treated with or without Momordica charantia (bitter gourd),” Clinica Terapeutica, vol. 160, no. 4, pp. 283–286, 2009. View at Scopus
  19. D. Boscoboinik, A. Szewczyk, C. Hensey, and A. Azzi, “Inhibition of cell proliferation by α-tocopherol: role of protein kinase C,” Journal of Biological Chemistry, vol. 266, no. 10, pp. 6188–6194, 1991. View at Scopus
  20. A. A. Latiff, S. L. Teoh, and S. Das, “Wound healing in diabetes mellitus: traditional treatment modalities,” Clinica Terapeutica, vol. 161, no. 4, pp. 359–364, 2010. View at Scopus
  21. W. K. Stadelmann, A. G. Digenis, and G. R. Tobin, “Impediments to wound healing,” American Journal of Surgery, vol. 176, no. 2, pp. 39S–47S, 1998. View at Publisher · View at Google Scholar · View at Scopus
  22. S. Salinthone, A. R. Kerns, V. Tsang, and D. W. Carr, “α-Tocopherol (vitamin E) stimulates cyclic AMP production in human peripheral mononuclear cells and alters immune function,” Molecular Immunology, vol. 53, no. 3, pp. 173–178, 2012.