About this Journal Submit a Manuscript Table of Contents
Evidence-Based Complementary and Alternative Medicine
Volume 2012 (2012), Article ID 492471, 9 pages
http://dx.doi.org/10.1155/2012/492471
Research Article

Effects of Electroacupuncture on N-Methyl-D-aspartate Receptor-Related Signaling Pathway in the Spinal Cord of Normal Rats

Division of Meridian and Structural Medicine, School of Korean Medicine, Pusan National University, Yangsan 626-870, Republic of Korea

Received 20 April 2011; Revised 29 September 2011; Accepted 26 October 2011

Academic Editor: Rui Chen

Copyright © 2012 Ha-Neui Kim et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. S. Han, “Acupuncture: neuropeptide release produced by electrical stimulation of different frequencies,” Trends in Neurosciences, vol. 26, no. 1, pp. 17–22, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. G. G. Xing, F. Y. Liu, X. X. Qu, J. S. Han, and Y. Wan, “Long-term synaptic plasticity in the spinal dorsal horn and its modulation by electroacupuncture in rats with neuropathic pain,” Experimental Neurology, vol. 208, no. 2, pp. 323–332, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. B. T. Choi, J. H. Lee, Y. Wan, and J. S. Han, “Involvement of ionotropic glutamate receptors in low frequency electroacupuncture analgesia in rats,” Neuroscience Letters, vol. 377, no. 3, pp. 185–188, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. T. J. Coderre and R. Melzack, “The contribution of excitatory amino acids to central sensitization and persistent nociception after formalin-induced tissue injury,” Journal of Neuroscience, vol. 12, no. 9, pp. 3665–3670, 1992. View at Scopus
  5. X. Gao, H. K. Kim, J. M. Chung, and K. Chung, “Enhancement of NMDA receptor phosphorylation of the spinal dorsal horn and nucleus gracilis neurons in neuropathic rats,” Pain, vol. 116, no. 1-2, pp. 62–72, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. Q. P. Ma and C. J. Woolf, “Involvement of neurokinin receptors in the induction but not the maintenance of mechanical allodynia in rat flexor motoneurones,” Journal of Physiology, vol. 486, no. 3, pp. 769–777, 1995. View at Scopus
  7. K. Rosenblum, Y. Dudai, and G. Richter-Levin, “Long-term potentiation increases tyrosine phosphorylation of the N-methyl-D-aspartate receptor subunit 2B in rat dentate gyrus in vivo,” Proceedings of the National Academy of Sciences of the United States of America, vol. 93, no. 19, pp. 10457–10460, 1996.
  8. J. A. Rostas, V. A. Brent, K. Voss, M. L. Errington, T. V. Bliss, and J. W. Gurd, “Enhanced tyrosine phosphorylation of the 2B subunit of the N-methyl-D-aspartate receptor in longterm potentiation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 93, no. 19, pp. 10452–10456, 1996.
  9. A. Momiyama, “Distinct synaptic and extrasynaptic NMDA receptors identified in dorsal horn neurones of the adult rat spinal cord,” Journal of Physiology, vol. 523, no. 3, pp. 621–628, 2000. View at Scopus
  10. L. M. Pedersen and J. Gjerstad, “Spinal cord long-term potentiation is attenuated by the NMDA-2B receptor antagonist Ro 25-6981,” Acta Physiologica, vol. 192, no. 3, pp. 421–427, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. X. X. Qu, J. Cai, M. J. Li et al., “Role of the spinal cord NR2B-containing NMDA receptors in the development of neuropathic pain,” Experimental Neurology, vol. 215, no. 2, pp. 298–307, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. H. Ikeda, K. Kusudo, P. D. Ryu, and K. Murase, “Effects of corticotropin-releasing factor on plasticity of optically recorded neuronal activity in the substantia gelatinosa of rat spinal cord slices,” Pain, vol. 106, no. 1-2, pp. 197–207, 2003. View at Publisher · View at Google Scholar · View at Scopus
  13. T. Fukui, Y. Dai, K. Iwata et al., “Frequency-dependent ERK phosphorylation in spinal neurons by electric stimulation of the sciatic nerve and the role in electrophysiological activity,” Molecular Pain, vol. 3, pp. 18–27, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. F. Karim, G. Bhave, and R. W. Gereau IV, “Metabotropic glutamate receptors on peripheral sensory neuron terminals as targets for the development of novel analgesics,” Molecular Psychiatry, vol. 6, no. 6, pp. 615–617, 2001. View at Publisher · View at Google Scholar · View at Scopus
  15. Y. Kawasaki, T. Kohno, Z. Y. Zhuang et al., “Ionotropic and metabotropic receptors, protein kinase A, protein kinase C, and Src contribute to C-fiber-induced ERK activation and cAMP response element-binding protein phosphorylation in dorsal horn neurons, leading to central sensitization,” Journal of Neuroscience, vol. 24, no. 38, pp. 8310–8321, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. H. Y. Peng, Y. W. Cheng, S. D. Lee et al., “Glutamate-mediated spinal reflex potentiation involves ERK 1/2 phosphorylation in anesthetized rats,” Neuropharmacology, vol. 54, no. 4, pp. 686–698, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. E. M. Garry, A. Delaney, G. Blackburn-Munro et al., “Activation of p38 and p42/44 MAP kinase in neuropathic pain: involvement of VPAC2 and NK2 receptors and mediation by spinal glia,” Molecular and Cellular Neuroscience, vol. 30, no. 4, pp. 523–537, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. S. Pezet, F. Marchand, R. D'Mello et al., “Phosphatidylinositol 3-kinase is a key mediator of central sensitization in painful inflammatory conditions,” Journal of Neuroscience, vol. 28, no. 16, pp. 4261–4270, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. Y. Q. Zhang, G. C. Ji, G. C. Wu, and Z. Q. Zhao, “Excitatory amino acid receptor antagonists and electroacupuncture synergetically inhibit carrageenan-induced behavioral hyperalgesia and spinal fos expression in rats,” Pain, vol. 99, no. 3, pp. 525–535, 2002. View at Publisher · View at Google Scholar · View at Scopus
  20. R. V. Størkson, A. Kjørsvik, A. Tjølsen, and K. Hole, “Lumbar catheterization of the spinal subarachnoid space in the rat,” Journal of Neuroscience Methods, vol. 65, no. 2, pp. 167–172, 1996. View at Publisher · View at Google Scholar · View at Scopus
  21. J. W. Ryu, J. H. Lee, Y. H. Choi, Y. T. Lee, and B. T. Choi, “Effects of protein phosphatase inhibitors on the phosphorylation of spinal cord N-methyl-d-aspartate receptors following electroacupuncture stimulation in rats,” Brain Research Bulletin, vol. 75, no. 5, pp. 687–691, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. J. Sandkühler, “Learning and memory in pain pathways,” Pain, vol. 88, no. 2, pp. 113–118, 2000.
  23. G. G. Nagy, M. Watanabe, M. Fukaya, and A. J. Todd, “Synaptic distribution of the NR1, NR2A and NR2B subunits of the N-methyl-D-aspartate receptor in the rat lumbar spinal cord revealed with an antigen-unmasking technique,” European Journal of Neuroscience, vol. 20, no. 12, pp. 3301–3312, 2004. View at Publisher · View at Google Scholar · View at Scopus
  24. J. Gjerstad, G. F. Lien, L. M. Pedersen, E. C. Valen, and S. Mollerup, “Changes in gene expression of Zif, c-fos and cyclooxygenase-2 associated with spinal long-term potentiation,” NeuroReport, vol. 16, no. 13, pp. 1477–1481, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. L. J. Rygh, R. Suzuki, W. Rahman et al., “Local and descending circuits regulate long-term potentiation and zif268 expression in spinal neurons,” European Journal of Neuroscience, vol. 24, no. 3, pp. 761–772, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. M. S. Perkinton, J. K. Ip, G. L. Wood, A. J. Crossthwaite, and R. J. Williams, “Phosphatidylinositol 3-kinase is a central mediator of NMDA receptor signalling to MAP kinase (Erkl/2), Akt/PKB and CREB in striatal neurones,” Journal of Neurochemistry, vol. 80, no. 2, pp. 239–254, 2002. View at Publisher · View at Google Scholar · View at Scopus
  27. R. R. Ji and F. Rupp, “Phosphorylation of transcription factor CREB in rat spinal cord after formalin-induced hyperalgesia: relationship to c-fos induction,” Journal of Neuroscience, vol. 17, no. 5, pp. 1776–1785, 1997. View at Scopus
  28. H. L. Rittner, D. Labuz, M. Schaefer et al., “Pain control by CXCR2 ligands through Ca2+-regulated release of opioid peptides from polymorphonuclear cells,” The FASEB Journal, vol. 20, no. 14, pp. 2627–2629, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. S. X. Ma, “Neurobiology of acupuncture: toward CAM,” Evidence-Based Complementary and Alternative Medicine, vol. 1, no. 1, pp. 41–47, 2004. View at Publisher · View at Google Scholar