About this Journal Submit a Manuscript Table of Contents
Evidence-Based Complementary and Alternative Medicine
Volume 2012 (2012), Article ID 501796, 15 pages
http://dx.doi.org/10.1155/2012/501796
Research Article

Fermented Mistletoe Extract as a Multimodal Antitumoral Agent in Gliomas

1Laboratory for Molecular Neuro-Oncology, Hertie Institute for Clinical Brain Research and Center Neurology, University of Tübingen, Otfried-Müller-Straße 27, 72076 Tübingen, Germany
2Institute of Neurology (Edinger-Institute), Goethe University of Frankfurt, Heinrich-Hoffmann-Straße 7, 60528 Frankfurt, Germany
3Neuroimmunology, Department of General Neurology, Hertie Institute for Clinical Brain Research and Center Neurology, University of Tübingen, Otfried-Müller-Straße 27, 72076 Tübingen, Germany

Received 26 July 2012; Accepted 5 September 2012

Academic Editor: Arndt Büssing

Copyright © 2012 Oliver Podlech et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

In Europe, commercially available extracts from the white-berry mistletoe (Viscum album L.) are widely used as a complementary cancer therapy. Mistletoe lectins have been identified as main active components and exhibit cytotoxic effects as well as immunomodulatory activity. Since it is still not elucidated in detail how mistle toe extracts such as ISCADOR communicate their effects, we analyzed the mechanisms that might be responsible for their antitumoral function on a molecular and functional level. ISCADOR-treated glioblastoma (GBM) cells down-regulate central genes involved in glioblastoma progression and malignancy such as the cytokine TGF-β and matrix-metalloproteinases. Using in vitro glioblastoma/immune cell co-cultivation assays as well as measurement of cell migration and invasion, we could demonstrate that in glioblastoma cells, lectin-rich ISCADOR M and ISCADOR Q significantly enforce NK-cell-mediated GBM cell lysis. Beside its immune stimulatory effect, ISCADOR reduces the migratory and invasive potential of glioblastoma cells. In a syngeneic as well as in a xenograft glioblastoma mouse model, both pretreatment of tumor cells and intratumoral therapy of subcutaneously growing glioblastoma cells with ISCADOR Q showed delayed tumor growth. In conclusion, ISCADOR Q, showing multiple positive effects in the treatment of glioblastoma, may be a candidate for concomitant treatment of this cancer.