About this Journal Submit a Manuscript Table of Contents
Evidence-Based Complementary and Alternative Medicine
Volume 2012 (2012), Article ID 506214, 8 pages
http://dx.doi.org/10.1155/2012/506214
Research Article

Cardioprotective Effects of 20(S)-Ginsenoside Rh2 against Doxorubicin-Induced Cardiotoxicity In Vitro and In Vivo

1Department of Pharmacology, School of Pharmacy, Yantai University, Yantai 264005, China
2State Key Laboratory of Long-Acting and Targeting Drug Delivery Technologies, Luye Pharma Group Ltd., Yantai 264003, China

Received 27 May 2012; Revised 23 August 2012; Accepted 13 September 2012

Academic Editor: Seung-Heon Hong

Copyright © 2012 Hongbo Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. Minotti, P. Menna, E. Salvatorelli, G. Cairo, and L. Gianni, “Anthracyclines: molecular advances and pharmacologie developments in antitumor activity and cardiotoxicity,” Pharmacological Reviews, vol. 56, no. 2, pp. 185–229, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. J. M. Scott, A. Khakoo, J. R. Mackey, M. J. Haykowsky, P. S. Douglas, and L. W. Jones, “Modulation of anthracycline-induced cardiotoxicity by aerobic exercise in breast cancer: current evidence and underlying mechanisms,” Circulation, vol. 124, no. 5, pp. 642–650, 2011.
  3. L. Li, Q. Lu, Y. Shen, and X. Hu, “Schisandrin B enhances doxorubicin-induced apoptosis of cancer cells but not normal cells,” Biochemical Pharmacology, vol. 71, no. 5, pp. 584–595, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. S. Arunachalam, S. Y. Kim, S. H. Lee et al., “Davallialactone protects against adriamycin-induced cardiotoxicity in vitro and in vivo,” Journal of Natural Medicines, vol. 66, no. 1, pp. 149–157, 2012. View at Publisher · View at Google Scholar
  5. R. D. Olson, P. S. Mushlin, D. E. Brenner et al., “Doxorubicin cardiotoxicity may be caused by its metabolite, doxorubicinol,” Proceedings of the National Academy of Sciences of the United States of America, vol. 85, no. 10, pp. 3585–3589, 1988. View at Scopus
  6. N. Li, Q. Pan, W. Han, Z. Liu, and X. Hu, “Schisandrin B prevents doxorubicin-induced cardiotoxicity via enhancing glutathione redox cycling,” Clinical Cancer Research, vol. 13, no. 22, pp. 6753–6760, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. W. Zhu, M. H. Soonpaa, H. Chen et al., “Acute doxorubicin cardiotoxicity is associated with p53-induced inhibition of the mammalian target of rapamycin pathway,” Circulation, vol. 119, no. 1, pp. 99–106, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. K. Li, R. Y. T. Sung, Z. H. Wei et al., “Thrombopoietin protects against in vitro and in vivo cardiotoxicity induced by doxorubicin,” Circulation, vol. 113, no. 18, pp. 2211–2220, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. A. R. Imondi, P. Della Torre, G. Mazué et al., “Dose-response relationship of dexrazoxane for prevention of doxorubicin- induced cardiotoxicity in mice, rats, and dogs,” Cancer Research, vol. 56, no. 18, pp. 4200–4204, 1996. View at Scopus
  10. N. Siveski-Iliskovic, N. Kaul, and P. K. Singal, “Probucol promotes endogenous antioxidants and provides protection against adriamycin-induced cardiomyopathy in rats,” Circulation, vol. 89, no. 6, pp. 2829–2835, 1994. View at Scopus
  11. J. Xiao, G. B. Sun, B. Sun et al., “Kaempferol protects against doxorubicin-induced cardiotoxicity in vivo and in vitro,” Toxicology, vol. 292, no. 1, pp. 53–62, 2012. View at Publisher · View at Google Scholar
  12. M. Karmazyn, M. Moey, and X. T. Gan, “Therapeutic potential of ginseng in the management of cardiovascular disorders,” Drugs, vol. 71, no. 15, pp. 1989–2008, 2011.
  13. A. S. Attele, J. A. Wu, and C. S. Yuan, “Ginseng pharmacology: multiple constituents and multiple actions,” Biochemical Pharmacology, vol. 58, no. 11, pp. 1685–1693, 1999. View at Publisher · View at Google Scholar · View at Scopus
  14. D. Schibilsky, F. Beyersdorf, and U. Goebel, “Amelioration of rat cardiac cold ischemia/reperfusion injury with inhaled hydrogen or carbon monoxide, or both,” Journal of Heart and Lung Transplantation, vol. 29, no. 12, p. 1442, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. V. V. Kupriyanov, B. Xiang, J. Sun, and O. Jilkina, “The effects of drugs modulating K+ transport on Rb+ uptake and distribution in pig hearts following regional ischemia: 87Rb MRI study,” NMR in Biomedicine, vol. 15, no. 5, pp. 348–355, 2002. View at Publisher · View at Google Scholar · View at Scopus
  16. D. Zhu, L. Wu, C. R. Li et al., “Ginsenoside Rg1 protects rat cardiomyocyte from hypoxia/reoxygenation oxidative injury via antioxidant and intracellular calcium homeostasis,” Journal of Cellular Biochemistry, vol. 108, no. 1, pp. 117–124, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. J. Zhang, F. Zhou, X. Wu et al., “Cellular pharmacokinetic mechanisms of adriamycin resistance and its modulation by 20(S)-ginsenoside Rh2 in MCF-7/Adr cells,” British Journal of Pharmacology, vol. 165, no. 1, pp. 120–134, 2012. View at Publisher · View at Google Scholar
  18. B. Li, J. Zhao, C. Z. Wang et al., “Ginsenoside Rh2 induces apoptosis and paraptosis-like cell death in colorectal cancer cells through activation of p53,” Cancer Letters, vol. 301, no. 2, pp. 185–192, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. E. K. Park, E. J. Lee, S. H. Lee et al., “Induction of apoptosis by the ginsenoside Rh2 by internalization of lipid rafts and caveolae and inactivation of Akt,” British Journal of Pharmacology, vol. 160, no. 5, pp. 1212–1223, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. E. K. Park, M. K. Choo, J. K. Oh, J. H. Ryu, and D. H. Kim, “Ginsenoside Rh2 reduces ischemic brain injury in rats,” Biological and Pharmaceutical Bulletin, vol. 27, no. 3, pp. 433–436, 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. H. Wang, H. Li, M. Zuo et al., “Lx2-32c, a novel taxane and its antitumor activities in vitro and in vivo,” Cancer Letters, vol. 268, no. 1, pp. 89–97, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. M. Rajadurai and P. Stanely Mainzen Prince, “Preventive effect of naringin on cardiac markers, electrocardiographic patterns and lysosomal hydrolases in normal and isoproterenol-induced myocardial infarction in Wistar rats,” Toxicology, vol. 230, no. 2-3, pp. 178–188, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. X. Sun, Z. Zhou, and Y. J. Kang, “Attenuation of doxorubicin chronic toxicity in metallothionein-overexpressing transgenic mouse heart,” Cancer Research, vol. 61, no. 8, pp. 3382–3387, 2001. View at Scopus
  24. R. Shi, C. C. Huang, R. S. Aronstam, N. Ercal, A. Martin, and Y. W. Huang, “N-acetylcysteine amide decreases oxidative stress but not cell death induced by doxorubicin in H9c2 cardiomyocytes,” BMC Pharmacology, vol. 9, p. 7, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. K. Hellmann, “Overview and historical development of dexrazoxane,” Seminars in Oncology, vol. 25, no. 4, supplement 10, pp. 48–54, 1998. View at Scopus