About this Journal Submit a Manuscript Table of Contents
Evidence-Based Complementary and Alternative Medicine
Volume 2012 (2012), Article ID 546873, 8 pages
http://dx.doi.org/10.1155/2012/546873
Research Article

Bridelia ferruginea Produces Antineuroinflammatory Activity through Inhibition of Nuclear Factor-kappa B and p38 MAPK Signalling

1Division of Pharmacy and Pharmaceutical Science, Department of Chemical and Biological Sciences, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK
2Neurochemistry Research Laboratory, Department of Psychiatry and Psychotherapy, University of Freiburg Medical School, Hauptstraße 5, 79104 Freiburg, Germany
3Department of Chemistry, Faculty of Science, Obafemi Awolowo University, Ile-Ife, Nigeria
4VivaCell Biotechnology GmbH, Ferdinand-Porsche-Straße 5, 79211 Denzlingen, Germany

Received 4 September 2012; Revised 15 November 2012; Accepted 21 November 2012

Academic Editor: Shao Li

Copyright © 2012 Olumayokun A. Olajide et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. T. Okpako, “Traditional African medicine: theory and pharmacology explored,” Trends in Pharmacological Sciences, vol. 20, no. 12, pp. 482–485, 1999. View at Publisher · View at Google Scholar · View at Scopus
  2. B. Oliver-Bever, Medicinal Plants in Tropical West Africa, Cambridge University Press, London, UK, 1986.
  3. M. M. Iwu, Handbook of African Medicinal Plants, CRC Press, Boca Raton, Fla, USA, 1993.
  4. I. Addae-Mensah, Towards a Rational Scientific Basis for Herbal Medicine: A Phytochemist's Two-Decade Contribution, Ghana Universities Press, Accra, Ghana, 1992.
  5. O. A. Olajide, J. M. Makinde, and S. O. Awe, “Effects of the aqueous extract of Bridelia ferruginea stem bark on carrageenan-induced oedema and granuloma tissue formation in rats and mice,” Journal of Ethnopharmacology, vol. 66, no. 1, pp. 113–117, 1999. View at Publisher · View at Google Scholar · View at Scopus
  6. O. A. Olajide, J. M. Makinde, D. T. Okpako, and S. O. Awe, “Studies on the anti-inflammatory and related pharmacological properties of the aqueous extract of Bridelia ferruginea stem bark,” Journal of Ethnopharmacology, vol. 71, no. 1-2, pp. 153–160, 2000. View at Publisher · View at Google Scholar · View at Scopus
  7. O. A. Olajide, D. T. Okpako, and J. M. Makinde, “Anti-inflammatory properties of Bridelia ferruginea stem bark: Inhibition of lipopolysaccaride-induced septic shock and vascular permeability,” Journal of Ethnopharmacology, vol. 88, no. 2-3, pp. 221–224, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. G. C. Akuodor, C. C. Mbah, N. A. Anyalewechi, M. Idris-Usman, T. C. Iwuanyawu, and U. A. Osunkwo, “Pharmacological profile of aqueous extract of Bridelia ferruginea stem bark in the relief of pain and fever,” Journal of Medicinal Plants Research, vol. 5, no. 22, pp. 5366–5369, 2011.
  9. A. Adetutu, W. A. Morgan, and O. Corcoran, “Antibacterial, antioxidant and fibroblast growth stimulation activity of crude extracts of Bridelia ferruginea leaf, a wound-healing plant of Nigeria,” Journal of Ethnopharmacology, vol. 133, no. 1, pp. 116–119, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. N. H. Nam, “Naturally occurring NF-κB inhibitors,” Mini-Reviews in Medicinal Chemistry, vol. 6, no. 8, pp. 945–951, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. F. Folmer, M. Jaspars, M. Dicato, and M. Diederich, “Marine natural products as targeted modulators of the transcription factor NF-κB,” Biochemical Pharmacology, vol. 75, no. 3, pp. 603–617, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. L. Munoz and A. J. Ammit, “Targeting p38 MAPK pathway for the treatment of Alzheimer's disease,” Neuropharmacology, vol. 58, no. 3, pp. 561–568, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. H. Y. Yong, M. S. Koh, and A. Moon, “The p38 MAPK inhibitors for the treatment of inflammatory diseases and cancer,” Expert Opinion on Investigational Drugs, vol. 18, no. 12, pp. 1893–1905, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. B. L. Fiebich, K. Biber, K. Lieb et al., “Cyclooxygenase-2 expression in rat microglia is induced by adenosine A2a-receptors,” GLIA, vol. 18, no. 2, pp. 152–160, 1996. View at Scopus
  15. H. S. Bhatia, E. Candelario-Jalil, A. C. P. de Oliveira, O. A. Olajide, G. Martínez-Sánchez, and B. L. Fiebich, “Mangiferin inhibits cyclooxygenase-2 expression and prostaglandin E2 production in activated rat microglial cells,” Archives of Biochemistry and Biophysics, vol. 477, no. 2, pp. 253–258, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. O. A. Olajide, E. H. Heiss, D. Schachner, C. W. Wright, A. M. Vollmar, and V. M. Dirsch, “Synthetic cryptolepine inhibits DNA binding of NF-κB,” Bioorganic and Medicinal Chemistry, vol. 15, no. 1, pp. 43–49, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. H. W. Jung, C. H. Yoon, K. M. Park, H. S. Han, and Y. K. Park, “Hexane fraction of Zingiberis Rhizoma Crudus extract inhibits the production of nitric oxide and proinflammatory cytokines in LPS-stimulated BV2 microglial cells via the NF-kappaB pathway,” Food and Chemical Toxicology, vol. 47, no. 6, pp. 1190–1197, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. Y. J. Surh, K. S. Chun, H. H. Cha et al., “Molecular mechanisms underlying chemopreventive activities of anti-inflammatory phytochemicals: down-regulation of COX-2 and iNOS through suppression of NF-κB activation,” Mutation Research, vol. 480-481, pp. 243–268, 2001. View at Scopus
  19. S. P. Hehner, T. G. Hofmann, W. Dröge, and M. L. Schmitz, “The antiinflammatory sesquiterpene lactone parthenolide inhibits NF-κb by targeting the IκB kinase complex,” Journal of Immunology, vol. 163, no. 10, pp. 5617–5623, 1999. View at Scopus
  20. B. H. B. Kwok, B. Koh, M. I. Ndubuisi, M. Elofsson, and C. M. Crews, “The anti-inflammatory natural product parthenolide from the medicinal herb Feverfew directly binds to and inhibits IκB kinase,” Chemistry and Biology, vol. 8, no. 8, pp. 759–766, 2001. View at Publisher · View at Google Scholar · View at Scopus
  21. B. Y. Kang, S. W. Chung, and T. S. Kim, “Inhibition of interleukin-12 production in lipopolysaccharide-activated mouse macrophages by parthenolide, a predominant sesquiterpene lactone in Tanacetum parthenium: Involvement of nuclear factor-κB,” Immunology Letters, vol. 77, no. 3, pp. 159–163, 2001. View at Publisher · View at Google Scholar · View at Scopus
  22. H. O. J. Collier, N. M. Butt, W. J. McDonald-Gibson, and S. A. Saeed, “Extract of feverfew inhibits prostaglandin biosynthesis,” The Lancet, vol. 2, no. 8200, pp. 922–923, 1980. View at Scopus
  23. W. J. Pugh and K. Sambo, “Prostaglandin synthetase inhibitors in feverfew,” Journal of Pharmacy and Pharmacology, vol. 40, no. 10, pp. 743–745, 1988. View at Scopus
  24. B. L. Fiebich, K. Lieb, S. Engels, and M. Heinrich, “Inhibition of LPS-induced p42/44 MAP kinase activation and iNOS/NO synthesis by parthenolide in rat primary microglial cells,” Journal of Neuroimmunology, vol. 132, no. 1-2, pp. 18–24, 2002. View at Publisher · View at Google Scholar · View at Scopus
  25. N. R. Bhat, P. Zhang, J. C. Lee, and E. L. Hogan, “Extracellular signal-regulated kinase and p38 subgroups of mitogen- activated protein kinases regulate inducible nitric oxide synthase and tumor necrosis factor-α gene expression in endotoxin-stimulated primary glial cultures,” Journal of Neuroscience, vol. 18, no. 5, pp. 1633–1641, 1998. View at Scopus
  26. E. D. Chan and D. W. H. Riches, “IFN-γ + LPS induction of iNOS is modulated by ERK, JNK/SAPK, and p38mapk in a mouse macrophage cell line,” American Journal of Physiology, vol. 280, no. 3, pp. C441–C450, 2001. View at Scopus
  27. H. Jijon, B. Allard, and C. Jobin, “NF-κB inducing kinase activates NF-κB transcriptional activity independently of IκB kinase γ through a p38 MAPK-dependent RelA phosphorylation pathway,” Cellular Signalling, vol. 16, no. 9, pp. 1023–1032, 2004. View at Publisher · View at Google Scholar · View at Scopus
  28. C. M. Olson, M. N. Hedrick, H. Izadi, T. C. Bates, E. R. Olivera, and J. Anguita, “p38 mitogen-activated protein kinase controls NF-κB transcriptional activation and tumor necrosis factor alpha production through RelA phosphorylation mediated by mitogen- and stress-activated protein kinase 1 in response to Borrelia burgdorferi antigens,” Infection and Immunity, vol. 75, no. 1, pp. 270–277, 2007. View at Publisher · View at Google Scholar · View at Scopus